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FOREWORD

This final technical report describes the re-
sults obtained by SIGNATRON, Inc. of Lexington,
Mass. on Air Force Contract F30603-80-C-0104 for
Rome Air Development Center. The objective of
this effort is to develop a technique for identi-
fying system response of nonlinear circuits by
measurements of output response to known inputs.

The SIGNATRON Project Engineer for the effort
was Dr. Michael Rudko. The project was supervised
by Dr. Julian J. Bussgang.

The support and assistance provided by cogni-
zant RADC personnel Mr. D. Kenneally, the techni-
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SECTION 1
INTRODUCTION

This report describes the results of a study into nonlinear
system identification techniques. The primary objective was to
refine previously proposed techniques and make actual circuit
measurement easier.

The need for nonlinear system identification is of impor-
tance because of the increasingly dense environment of present
and future Air Force communication systems. Accurate nonlinear
system identification would help in the accurate prediction of
such nonlinear effects as, for example, intermodulation and har-
monic distortion, thus leading to the determination of RF sus-
ceptibility of various electronic equipment.

A promising system identification technique known as the
pencil of functions method was originally proposed by Jain [1974]
and later applied by Ewen [1975,1979]) to the identification of
the nonlinear transfer functions of a class of nonlinear sys-
tems. Ewen's identification was based on. the fact that, for
lumped parameter circuits containing zero-memory nonlinearities
between circuit nodes, the nonlinear transfer functions have
poles which are'uniquely determined by the poles of the linear
part of the circuit. Such nonlinear transfer functions can
therefore be identified by finding the linear transfer function
and thus its poles and then identifying the residues or zeros of
the nonlinear transfer functions.

Unfor tunately, the identification technique, as proposed by
Ewen was not readily implementable in practice and numerous ques-
tions remained as to the appropriate parameters to be used and
the per formance to be expected in a realistic, noisy environment,

1-1
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In fact, Ewen found that for a two pole system, his re-
quired sampling rate was 4 to 10 times the highest frequency of
the passband of the system. The sampling rate was found to rise
unreasonably high as the number of poles was increased. Ewen
concluded that current A/D device availability limited the band-
width of two pole systems that could be analyzed to 10 or, at
most, 30 kHz. As the number of poles increased, the sampling
rate requirements increased. Systems with more than two poles
required a sampling rate which exceeded the Nyguist sampling
rate. Thus, additional poles limited further the bandwidth of
the systems which could be identified.

Ewen noted that the fastest commercially available A/D con-
verter with 16 bit resolution had the capability of sampling a
signal at 125 ksample/sec. He concluded that, at least at
present, only two-pole systems with a maximum bandwidth of up to
10K or 30 kHz could be analyzed. For a 4-pole system, the reso-
lution required in an A/D converter is at least 24 bit per sample
at 125 ksample/sec in order to achieve a minimum performance.
This again indicates that at the present time, this type of non-
linear system analysis would be limited to two-pole systems.

The objective of our study was to solve the implementation
problems found by Ewen. The organization of this report is as
follows: the problem is first defined in Chapter 2. The pencil-
of-functions method and Ewen's technique are then summarized in
Section 3.1, The identification parameters and practical diffi-
culties associated with Ewen's method are analyzed in Section
3.2. Based on these factors, Section 3.2 concludes with an out-
line of the detailed objectives of the present effort.

In order to meet these objectives, a new discrete iterative
identification technique is defined in Chapter 4. It has the ad-
vantage of being defined totally on discrete samples of the input

and output processes, thus eliminating a major difficulty asso-
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ciated with Ewen's approach which stems from the numerical evalu-
ation of repeated continuous integrals., Moreover, the new method
permits evaluation of the reliability of the identified unknown
poles by also identifying at each step the known input poles.
The distance between the identified input poles and the true in-
put poles is indicative of the accuracy of the identified unknown
system poles, In the identification of wideband systems, itera-
tion proceeds by starting with the identification of the lowest
frequency poles, then using previously identified lower frequency

poles as knowns to identify the next higher frequency poles.

The problem of identifying a system in the presence of
noise is examined in Chapter 5. The effects of noise are inves-
tigated and desirable identification parameters are specified us-

ing simulation results.

Results of simulations of the discrete iterative identifi-
cation procedure are presented ir Chapter 6 for wideband and nar-
rowband systems containing up to four closely grouped noles. The
simulations were performed with varying levels of noise added to
the system output. The standard deviation of the noise ranged
from 0 to 5% of the maximum system output. The highest sampling
frequency used is not greater than the Nyquist rate. In all
cases tae correct number of poles was identified. The average
error in pole location ranged from .9% for the noiseless case to
158 for additive noise with a standard deviation equal to 5% of
the maximum value of the system output. The feasibility of
achieving identification of this accuracy at sampling rates no
higher than the Nyquist rate, greatly simplifies future implemen-
tation. The new method substantially decreases the required
sampling rate and, because of the greater tolerance to noise, the

necessary A/D converter resolution.

Possible per formance assessement criteria are outlined in

Chapter 7. Two types of criteria are possible. In Section 7.2,




the accuracy of the identified poles and‘zeros/residues are as-
sessed directly. 1In Section 7.3, global measures of the accuracy
of the identified impulse response or transfer function are dis-
cussed, It should be noted that nonlinear transfer function
identification makes use of the results of the linear system
identification, but requires the additional identification of the
zeros/residues of the nonlinear transfer functions which was not
under taken during the current effort. Thus, the impact of the
linear system parameter and global error measures on the quality

of nonlinear transfer function identification was not evaluated
in this study.

Finally, Chapter 8 summarizes the characteristics of the
discrete iterative identification technique and presents conclu-
cinmns as to its expected performance. The main characteristics
of the postulated technique are:

° Completely discrete formulation.

o Selective use of the knowledge of the input to
test for regions where poles are present and to
determine the reliability of the identified
poles.

° Iterative decrease of the sampling interval T.
* Use of previously identified poles as knowns in

the set defining the Gram determinant during the
identification of additional poles.

The advantages of the discrete iterative approach can be
summarized as follows:

. It does not require repeated integrations; in-
stead, time shifts are used.




° It permits the determination of regions where
system poles are present,

° It aids in determin’ing the number of poles being
identified.

o The accuracy of an identified input pole when it
is far from system poles gives a measure of the
best accuracy that can be expected.

. Identifying the input poles while using the iden-
tified poles as knowns gives a measure of the ac-
curacy of the identified poles.

° The use of identified poles as knowns is espe-
cially useful for wideband systems.,

. Lingar identification requires the measurement of
only approximately twenty output samples.

. The required sampling frequency 1is not higher
than the Nyquist rate.

Based on simulation results, it is conservatively concluded
that the method should be capable in practice of identifying sys-
tems containing separate groups of four or fewer closely packed
poles in the presence of additive output noise whose standard de-
viation is of the order of 1% of the maximum system sicnal ou%-
put. If the output noise is mainly due to quantization, this
should permit the use of 9 or 10 bit guantizers. The required
sampling frequency is approximately equal to the frequency of the
highest system pole. These values should permit a relatively
straightforward implementation.




# SECTION 2
PROBLEM DEFINITION b

In the increasingly dense communications environment found
in many defense communication systems, it is of great interest to
be able to predict the amount of intermodulation and harmonic
distortion generated in these various equipments. This entails
i accurate descriptions of the nonlinear characteristics of such 4
equipment. 1

In the case where the nonlinear behavior exhibits no jumps
or hysterisis, the nonlinear system can be represented by a Vol-
terra series. 1Its output y(t) due to excitation x(t) is then

given by ‘
y(t) = nzl _i ..._£ hn(ul,...,un)illlx(t-ui)dui
o (2.1)
= § y (t)
n=1""

where, Yn(t) is the nth-order system output. The system is
then characterized, that is its input-output relation is com-
pletely specified by the nth-order impulse responses
hp(ug,.e.. uy), n=1,2,... .

St £,

hd aadahe

If the system's nonlinearity is mild, the output is given
by the first few, predominantly three first terms of the series:

~

3
y(t) = Zl Y, (t). (2.2)
n=

2-1




In order to characterize such a system, it is necessary to deter-
mine hl(ul), hz(ul,uz), h3(ul,u2,u3) or. equivalently, the
higher~-order transfer functions

H,(s) £l[hl(u)]
Hz(sl,sz) = £2[h2(ul,u2)] (2.3)
Hi(syrs5.835) = £5[h3(u),u5.u5)]

where £, denotes n-dimensional Laplace transformation.

This problem is, in general, extremely complex since it in-
volves the determination of multidimensional functions. It has,
however, been shown that, in the case where the nonlinear system
is a lumped'parameter circuit with zero-memory nonlinearities be-
tween circuit nodes, the equivalent 2nd and 3rd-order transfer
function poles can be obtained from the poles of the 1linear
transfer function [Graham and Ehrman (1973); Ewen (1975)].

More precisely, let the transfer function of the linear
part of the system be given by

M

n (s+q,)
i=1 !

N ’
m (s+p,)

Hl(S) M<N

1=1 (2.4)

YA
i=) S*Pj

where, ~qys=Qreeer=Qyi =P1¢~P2se-+s-Pyi RysRys ooy Ry, are,
respectively, the zeros, poles and residues of the transfer func-
tion and it has been assumed for notational simplicity that the
poles are distinct.

Then, the 2nd and 3rd-order transfer functions are given,
respectively, by [Ewen (1975)]




L N Sytsytamy
Hz(sl'sz) =1 ) " (s,+s,+a, +a, J(s ia J(s,+a, }
kl=l k2=l 172 1 72 kl k2 2 k2 1 k2
(2.5)
C
H3(sl’52's3) % g ! ? (s,+s, +s tlt§k3+a +a, ))
kl=l k2=l k3=l 1 7273 kl k2 k3
1 + 1
(s *ay JUs #834a, ~a, ] 7 (sy*a, J(s)*s,*{ay +a, 7)
3 2 3 3 2 3
+ 1 + 1
(sl+ak3)[sl+sz+(ak2+a£;T (s3+ak3ffsz+s3ifék2+ak3IT

1 . 1
+ +
Tsz+ak3)(sz+s3+(ak2+ak3f) (sa+ak3)(sl+s3+(ak2+ak3))

where, the quantities J, L, akl, akz are uniquely determined
by the poles of the linear transfer function H;(s). The com-
plete identification of the nonlinear transfer functions of the
system requires, therefore, the 1identification of the 1linear
transfer function and the determination of the constants
Aklkz' Cklk2k3 for the permissible values of ki, ko, and kj.

The poles of the linear transfer function thus play a cru-
cial role in the identification of the linear and nonlinear parts
of the system. They not only specify the denominator of H;(s)
but linear combinations of these poles determine the poles of

Hz(sl,sz) and H3(sl,sz,s3).

i s’ il T e na o




In the next section, an identification technique, known as

the pencil of functions method, developed by Jain [Jain (1974)]
and applied by Ewen ([Ewen (1975), (1979)) to the above problem is
presented. The critical parameters of the technique and the
practical difficulties involved in applying it are isolated and
analyzed. An efficient and practical method for the identifica-
tion of the poles of a linear system is then developed and illus-
trated by simulation examples,

2-4




SECTION 3
PENCIL OF FUNCTIONS METHOD

3.0 Summary of the Method

A promising technique for determining, from input/output
measurements, the poles of the transfer function of a linear sys-
tem has been developed by Jain [1974]. Known as the pencil of
functions method, this technique was then applied, by Ewen (1975,
1979] to the identification of the 2nd and 3rd-order transfer
functions of a Volterra system. We next outline the pencil of
functions method as originally presented by Jain and used by
Ewen, This technique was the starting point of the present con-
tract. Subsequent developments by Jain and Osman [1979] under
separate contract No. F30602-75-C-0118, conducted in parallel
with the present contract, are presented where appropriate.

Suppose that the transfer function of the linear part of
the system is given by

M
_nl(S+qi) o(s)

_ i= _ 0Q(s

H(s) = = = P(s)

0 (s+p;)
=1 (3.1)
N R

= .E s+p *
i=1 i

*
Excite the system by xj(t) . With x;(t) known or measured,
measure the system output y;(t). By successive integrations,

compute

* Ewen selected x;(t) exponential for ease of analysis.

3-1
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t
x; (t) = £ x;_y (u)du

t (3.2)
Yi(t) {) Yi_l(u)dur i=112 .

Suppose that N, the number of poles, is known. Form the set

(3.3)
{{y erny, (0)) o (y, (e)-Ays(t) ) eee [y (E) Ay, (), |
Xo(t) e erxy,  (£)] i
where A is constant. Test the set for linear dependence by )

forming the linear combination 1
c (¥ (E) Ay, (8)) + oo + o (yg(t)-Ayy ,(t))

. (3.4)
+ dlxz(t) + ...+ deNfl(t) =0

The set is linearly independent if the only solution to (3.4) is

Cl=02=..-

It is linearly dependent otherwise.

Taking the Laplace transform of (3.3) an equivalent test
for linear independence is

(3.5)
cl(Yl(s) - xyz(s)) + ..+ cn(YN(s) - xYN+l(s))

+ dlx2(s) + ... +d (s) =0

NxN+l




But, using (3.1) and (3.2),

_ Q(s)
Yl(S) = F(_S-T Xl(S)

_ i-1
Xi(s) = Xl(s) / s (3.6)
Y.(s) =Y, (s) / si'l, i=1,2,... .

The test for linear independence in (3.5) therefore becomes

Q(s)(s—)\)(clsr‘,"l + o sN2

. (3.7)

+ps)(aysV e Ll v d

The left hand side of (3.7) contains 2N coefficients. If

{s-A) 1is not a factor of  P(s) that is, if A 1is not a pole of:

H(s) the polynomial in (3.7) is of degree 2N-1, containing
terms in 1, s, +.., SZN-l, and it has 2N coefficients. The
set is therefore linearly independent.

If A is a pole of H(s) or, equivalently, (s-A) is a
factor of P(s),

P(s) = P (s)(s-2) (3.8)

where, P'(s) is of degree N-1. Dividing (3.7) by (s-A) re-
sults in a polynomial of degree  2N-2, Since there are still
2N coefficients, the set is linearly dependent.

It follows that the poles of H(s) are the values of A
for which the set in (3.3) is linearly dependent. The linear de-
pendence of a set of time functions can be readily checked using
the Gram determinant which, for the set of functions

Py




{wl(t). wo(t)s vvy w (t)}, O<t<T (3.9)

is defined as

G, = det (3.10)

where the inner product wiwj over the interval [0,T) is equal to

*
wi(‘t)wj (T)dT' ilj=l,2,o-o,k

|
‘|
]
o —nr

and where * denotes complex conjugation.

Hence, the poles of H(s) are the values of A for which
the Gram determinant of the set of functions in (3.3) is equal to
zero.

Equivalently, it can be shown [Jain (1974)] that the poles
are the roots of the polynomial in A

172

1]
o

(3.11)

Ne—2ZZ

N-i
A ([G2N+l](i+l,i+l>

where, (G is the value of the  (i+l,i+l)th co-

2N+1](i+1,i+1)
factor of the Gram determinant of the set

{y () covy Yy (t)y %080, wovy x (E)} (3.12)
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In the above, it was assumed that N, the number of poles,
was known. In practice, this number must, of course, be found
before determining the poles using (3.11). The number N can be

determined by considering the set
1yl(t), oo yK(t), xz(t), ooy xK(t)} . (3.13)

Using the same approach as above, this set is linearly independ-
ent if K<N; it is linearly dependent if K>N+l. The number of
poles can, therefore, be found by calculating the Gram determin-
ant for the set in (3.13) for increasing values of K,
K=2,3,... . If K is the smallest K for which the Gram de-
terminant is zero, that is, the first value for which the set is

linearly dependent, the number of poles is . equal to

N =K -1. (3.14)

3.2 Identification Parameters and Practical Difficulties Asso-

ciated with Ewen's Methods

The identification of an unknown circuit using the pencil
ot functions approach as proposed by Ewen [Ewen (1975), (1979)]
and as described in Section 3.1 therefore involves the following

steps:
(1) Excite the system
(2) Measure the system outputs and inputs

(3) Calculate xp(t),eee, xp(t), yolt), ..., yp(t) as de-
fined in (3.2) by successive integrations,

bt i

bt

2 dae.




(4) Calculate the inner products over an interval T.

(5) Calculate the Gram detérminant of the set of functions

in step (3) for increasing values of K.

(6) Determine the number of poles N as K'-1l, where K' is
the smallest value of K for which the Gram determinant

is zero.
(7) Find the poles using (3.11).

Because of the amount of computation which is necessary, it
is more efficient to perform the calculations using a computer.
This suggests the identification set-up shown in Figure 3.1 where
the double arrow at the input indicates that the input can either
be generated in analog form and then converted to digital form or
generated by the computer and converted to analog form.,

Note that, in addition to the blocks shown in Figure 3.1, a
practical identification implementation would necessitate use of
a linear output and input amplifier/attenuator with large dynamic
range to insure that the system input is of the proper level and
that vy(t) uses the full range of the analog to digital con-
ver ter. The contract under which the present effort was per ~
formed called ofiginally for the design and the evaluation of a
practical implementation of the above technique. This was how-~
ever abandoned because of the following practical difficulties
and unresolved questions associated with the method:

(1) What is the impact of using different excitations? 1In

the original technique only a decaying exponential in-
put was considered.

3-6




x(t)
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Figure 3.1 Block Diagram of Identification Test Bed
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(2)

(3)

b

[ y(t)at
a

Because of the digital implementation the output sig-
nal must be sampled and quantized. A sampling rate
must therefore be specified which will assure optimum
performance and which will be practical with existing
analog to digital converters.

Simpson's rule was used in evaluating the integration
of a function as given by

b-a
n

[y(0) + 4y(at) + 2y(28t) + 4y(3At) +

(o}

... + 2y((2n-2)at) -+ 4y((2n-1)Aat) + y(2nat)] .

Each integration reduces the number of samples by one
half and therefore increases the error. As the number
of poles of the system increases, the number of re-
quired integrations increases accordingly. Integra-
tion by Simpson's rule. introduces error at each
step. After a number of integrations, therefore, the
error becomes excessively large. The accuracy of suc-
cessive integrals decreases rapidly. This loss of ac-
curacy due to numerical integration can be overcome by
increasing bits in the sample and the sampling rate.
However, the specifications of hardware devices which
implement analog to digital (A/D) and digital to ana-
log (D/A) conversions and the high rate of sampling
rapidly exceed the range of current technology as the
number of poles of the system increases. For example,
Ewen states that if we were to analyze a system of
four poles, the A/D converter would be required to
have 20-24 bits of resolution. The present commer-
cially available A/D converters are capable of at most

a 16 bit resolution,
3-8




(4)

(5)

The per formance of successive numerical integra-
tions has a large impact on the necessary sampling
rate. Ewen concluded that the sampling rate required
is determined by the need for accuracy of numerical
integration and not by Nyquist sampling constraints.
For a two pole system, the required sampling rate is 4
to 10 times the highest frequency of the passband of
the system if we desire a mean square error between
the actual and predicted system output to be smaller
than the mean square error induced by a 10 percent
error in each pole and residue. The sanmpling rate may
rise unreasonably high as the number of poles in-
creases. Considering errors in identified poles, Ewen

. concluded that the bandwidth of a two pole system that
can be analyzed is limited to 10 to 30 kHz by current

device availability,

Ewen noted that the fastest commercially avail-
able A/D converter with 16 bit resolution had the cap-
ability of sampling a signal at 124 kHz. This re-
sulted in his conclusion that, at least at present,
only systems with a maximum bandwidth of up to 10 kHz
or 30 kHz could be analyzed.

.The inner product inter<al T which, in noisy practical
situations, will result in the specified error in the
location of the identified poles, cannot be readily
determingd.

The measured digital output which is used will contain
noise due essentially to three sources: quantization
noise from the A/D converter, thermal noise originat-
ing in the unknown circuit and measurement errors.
The inner products which are the elements of the Gram
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matrix will therefore be noisy. As a consequence, the
Gram daterminant will not be zero for any k. This
will, of course, make it difficult to determine the
number of system poles. Even if the correct value
of N 1is determined errors in the inner products will
result ir. errors in pole locations. These errors in
pole locations can, of course, be expected to be in-~
creased if the wrong value of N is chosen.

(6) OQuality criteria must be studied which will permit to
quantify the performance of the identification tech-
nique and, after the global identification of the
system (the identification of the poles are
zeros/residues, traded off against the problems
identified in (1)-(5).

After the initial study resulted in the above conclusions,
it was decided with the concurrence of RADC to redirect the ef-
fort to the study of the aforementioned difficulties and unre-
solved questions. In Section 4, we describé the identification
Frocedure that was developed to combat these problems. More pre-
cisely, the following items were addressed: '

- Selection of excitation waveforms and techniques.

- Selection of input and output functionals to be
used in forming the Gram determinant.

- Determination of correlation intervals to be used
in the calculation of the inner products.

PSRy o

- Investigation of stopping rules for the determin-
ation of the number of linear system poles in the
presence of system noise, quantization noise and ]
as a function of the relative importance of the
poles.




Evaluation of the effectiveness of the proposed
techniques.

Analysis of the expected errors in pole locations
due to quantization noise, underspecification of
the number of poles and overspecification of the
number of poles,

Assessment of the class of systems that can be
identified given practical sampling rates and
quantization accuracies.

Study of measurement and computational techniques
that minimize errors in pole locations by averag-
ing out results of several measurements or of
several stages of the identification process.




SECTION 4
DISCRETE ITERATIVE APPROACH

4.1 Principle of the Discrete Method

4.1.1 Basic Method

As discussed in Section 3.2, because of the noise intro-
duced by the numerical calculation of repeated integrals and the
ensuing necessity of using very high sampling rates, a primary
objective of any practical implementation is to modify the pro-

cedure so as to eliminate this difficulty.

This can be accomplished by analyzing the problem directly
in the discrete sampled domain instead of implementing a digital
technique which emulates analog operations, i.e., the numerical

computation of successive integrals.

As in (3.1) suppose that the linear part of the system is
characterized by input-output transfer function

(S"'qi)

H(s) , M<N (4.1)

(s+p,)

p—

e =2
W aZiy AX
’_.l

R,
1

S+p.
pl

—

L
[N
e

where, for notational simplicity, it is assumed that the system
poles are distinct. If the unknown circuit is excited by the sum
of 1 exponentials




where, the constants c¢; and d; are, respectively, given by

Note that the assumption that the input is the sum of ex-
ponentials is equivalent to the assumption that the Laplace
transform of x(t) is the ratio of two polynomials in s with
the denominator polynomial of higher degree than the numerator
polynomial and the denominator polynomial having distinct
roots. Sampling y(t) with sampling frequency £4=1/T, sampl-
ing interval T, the sampled version of the output, over an in-
terval (0,LT], 1is given by '

N i I
y,(nT) = ] c.e + ¥ d.e ,  0<n<L . (4.4)

Note that the choice of L, the number of samples used, and of
the sampling period T are discussed in Section 5.3.2.




By successive shifts, form

Y,{nT) = ¥, ((n+1)T)
N =(n+1)p.T I ~{n+l)b. T
= 7 c;e ooy 7 de !
i=1 i=]
N ~np; T I -nb;T
= 7 c;(2)e + f d; (2)e ¢+ 0<n<L
i=] i=]
Yg(nT) = yK_l((n+l)T) = ¥, ({(n+k-1)71) (4.5)
N -npiT I —npiT
= 7 c; (ke + 93 d, (ke ¢+ 0<nqL
i=1 i=1
where
"piT '(k‘l’piT
ci(k) = ci(k—l)e = c;e
—biT _ -(k—l)biT
di‘k) = di‘k-l)e = die ’ k=2,3'¢¢.,K
4-3

hamAn el

.



Note that each of the y;(nT), i=1,2,...,K 1is a linear combina-

—npiT —npNT -nb.T
tion of the functions e , s eev, € , e Y, ...,

3 —nb T
e 1 Since these functions are linearly independent they

can be considered to form a basis for y;(nT), i=1,2,...,K.

Consider the set of shifted versions of the sampled output

(¥ (nT),y,(NT),ees ¥ (nT)] (4.6)

and test it for linear independence by forming the linear combi--

nation
alyl(nT) + azyz(nT) + see 4 aKyK(nT) = 0,0<n<L . (4.7)
-npiT —npNT
Since the linear combination in (4.7) has e ; eeeys € ,
-nbiT anT
e R ceer € as its basis, it is a (n+I)-dimensional
function. The left-hand side of (4.7) contains K coeffi-

cients. It follows that the set is linearly independent if
K<N+I (4.8)
and that it is linearly dependent if

K>N+I . (4.9)




As in Section 3.1, the linear dependence can be checked by
using the Gram determinant.

The set of functions in (4.6) is linearly dependent if the
Gram determinant

- o A
¥ ¥, Y Y, oo Yq¥x (4.10)
Y, Y,Y, oo Y ¥y
Gk=det . = 0
LYkY1 - Yk¥2 e YrYx

where,
*
yi(nT)yj(nT),.i,j=l,2,...,K .

The set is linearly independent if

GK # 0.

The dimensionality N+I of the basis, and thus the number N of
poles, can be determined by calculating the Gram determinant for
increasing values of K. If K is the smallest value of K
such that Gg.=0, then

N+I = K'-1 . (4.11)




Having determined N+I, the system poles -P}+ «... -Py and the
input poles =bys «..s -by can be found using a similar ap-

proach.

Consider the set

(4.12)

{(Ayl(nT)-yz(nT)),(kyz(nT)—y3(nT)),...,(AyN+I(nT)-yN+I+l(nT))} .

Using (4.5), the test for linear independence can be written as

N -p.T -np.T I -b,T =-nb.T
a; | 1 ocilr-e t)e s Y a(x-e e (4.13)
L% ]
i=1 i=1
N -p.T -p.T ~-np.T I -b.T ~b. T -nb.T
+ a, ) c;e Lirxe T )e P + 3 d;e e *)e 1
i=1 i=1
N =p.T -np.T
oo -(N+I-l)pT - 1 1
+ +ag,: i):=lcie it(r-e e
I —(N+I—l)biT —biT -nb.T
+ VY d;e (A-e e 1 =0 .

i

If 2nA/T is not one of the system or input poles, that is, if

-p;T .
k * e r 1=1,2,o-¢'N (4.14)
and -biT
)\ # e ’ i=l'2’co.'I ?
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the left-hand side of (4.13) is of dimension N+I and contains
N+1 coefficients, It follows that the set in (4.12) is then
linearly independent.

I1f AAnA/T is one of the system or input poles,

A =e ’ 1<i<N (4.15)
or

A =e R 1<icI

the dimension of the space in (4.13) is N+I-1 but the left-hand
side still contains N+1 coefficients. It follows that the set
is linearly dependent.

Hence, the system and input poles can be determined from
the values of A for which the set in (4.12) is linearly depen-
dent, or equivalently, for which the Gram determinant of the set
if zero. Using an approach due to Jain [1974]) as in (3.11) it
can be shown that these values of ) are the roots of the
polynomial

N+I-1 172 _
([GN+I+1](i+l,i+l)) =0 (4.16)

where, [G is the (i+l,i+l)th cofactor of the

N+I+1](i+l,i+l)
Gram determinant of the set

{y (nT), y,(nT), ooy Yy 10 (0TI} (4.17)

_a

Aot e




If Kl’AZ""'kN+I. represent the N+I roots of the polynomial

in (4.16), the system and input poles can be = :tained from
xnki/T, i=1,2,...,N+I . (4.18)

Qur discrete sampling and shift identification technique is
very similar to the pencil of functions method described in Chap-
ter 3. The essential differences are that

° The proposed technique 1is purely discrete: the
successive integrals have been replaced by successive
shifts.

) If the system is excited by the sum of I exponential
excitations, (N+I) poles are identified based on the

determinant of a (N+I+l)x(N+I+1l) matrix. The tech-
nique in Chapter 3 used a (2N+1)x(2N+1) matrix to
identify N poles.

Note that, in the above, the input poles are identified to-
gether with the system poles. In the following section the iden-
tification method derived here is slightly modified to make use
¢f the knowledge of the input poles.

4.1.2 Use of Input

During the identification of an unknown circuit, the input
to the circuit is, of course, known. This knowledge can there-
fore be used in the identification technique.

-nb, T -nb,T -nb. T

Suppose that e 1 ' e 2 ' O - I are known

and define the set




— i — .

o

-nb,T -nb. T
{y,(nT),y,(nT), e v,y (nT),e ee,e 1y, (4.19)

Test this set for linear independence by considering

—nblT

alyl(nT) + a2y2(nT) + see + aKyK(nT) + a e (4.20)

K+1
—anT

4+ oeoe 4 aK+Ie

=0, 0<n<L

where y;(nT), i=1,2,...,K is defined in (4.5).

Repeating the argument used to derive (4.8) and (4.9), the
set in (4.19) is linearly independent if

K<N (4.21)

and it is linearly dependent otherwise. It follows that if K
is the smallest value of K for which the Gram determinant of
the set in (4.19) is zerc, the number of system poles N is

given by
N =K' ~1. (4.22)

Having determined the number of system poles by increasing K
until K' is found, the system poles can be identified by con-
sidering the set

—nblT -anT
{(ry (nT)=y,(nT)) oo, (Ay (NT) Ay, (nT)), e reeese } .




Repeating the steps leading to (4.16), the system poles can be
found from the roots of the polynomial in A

1/2

N .
§ ANl =0 (4.24)

([6ns1e1)(ie1,141))

where, (G is the (i+l,i+l)th cofactor of the

N+I+1](i+l,i+l)
Gram determinant of the set

-nb,T -nb.T
{yl(nT)l'.olyN+l(nT)le 1 r***,€ I } . (4-25)

Denoting the roots of the polynomial in (4.24) by }‘1’7\2"”’)‘N’ the
system poles are given by

-pi = lnli/T’ i=l'2’ooo'N . (4;26)

Equation (4.24) thus permits the identification of the system
poles. The only difference between this result and procedure and
those presented in Section 4.1.1 is that, in the present case,
knowledge of the input is used and only the system poles are
identified. Note that in the pencil of functions method, Ewen
(1979] and Jain [1980] also use the knowledge of the input. This
is further discussed in Section 4.3. Thus, the present method
can be considered as a discrete version of the pencil of func-
tions technique which uses shifts.

In the following section, use of the input is applied se-~
lectively and an iterative identification technique is defined.
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4,2 Iterative Approach

The selective use of the knowledge of the input in the
identification procedure can serve as a check for the accuracy of
the identified system poles and in the determination of the re-
gions where the poles are located. Moreover, the iterative var-
iation of the sampling interval together with the use as knowns
of previously identified poles can be the basis of an iterative
identification method.

This approach can best be illustrated through a simple ex~
ample. Suppose that the system transfer function contains two
real poles -p; and -p, with p, much larger than pj. Ex-
cite the system by an input consisting of a single exponential

x(t) = e b,

Then, using (4.4), the sampled output is given by

-np;T

-np,T -
y1(nT) = cje + cqe: P2% 4 ge-mbT, (4.27)

First, choose a sampling interval T and an input pole <-b such
that

b <« pl << p2 (4.28)
T ~1/b.

It follows that
bT ~1 (4.29)

and




; y;(nT) =de PPT (4.30)

Carry out the identification technique without using the know-
f ledge of the input and identify a single pole using the set

{y,(nT), y,(nT)}
1 2

and (4.16) with N+I=1. From (4.30) it follows that this will
result in the input pole being identified.

Iteratively decrease T and repeat the step above. When
the sampling interval is small enough such that

poT << 1
H the sampled output will, using (4.27), be approximately equal to
]
-np,T _
y,(nT) ~ ce 17 4 ge NPT, (4.32)

Because of the influence of the system pole at -p; on the out-
put, the identification of a single pole as above will. no longer
result in the input pole being identified.

The identification of a single pole which is not the input
pole thus indicates the presence of a system pole(s) =-p; such
that e_npiT, n=1,2,..., is not negligibly small. Then, this
pole(s) can be identified using (4.24) where, knowledge of the

input is used.

Suppose that this procedure resulted in Py being identi-

-np; T

fied., The accuracy of ;l , that is how well e models the

system contribution to the output, can be checked by using




-nﬁ T
e 1 as a known and .identifying the input pole. That is, use

(4.24) with N=1 and the set

-né T
{y (nT), y,(nT), e 1 } (4.33)

‘to carry out the identification. I1f, following this procedure,
the identified pole is close to the input pole, 51 can be judged
to be an adequate estimate of p;. The degree of closeness which
is required depends on the amaint of noise corrupting the mea-
surements. In the noiseless case, the identified input pole is
judged close to the actual input pole if it is within 10% of the
true value. In the higher noise level cases considered in the
following, .the acceptance region increases to 40%.

This last step can then be repeated for decreasing values
of T. The identification based on the set in (4.33) will give a
good approximation of the input pole when (4.32) is an adequate
representation of the system output, When this is not the case,
that is, when T 1is small enough so that

p2T ~l’

and the system output is given by (4.27) the input pole will not
be identified. Then, the knowledge of the gcystem input and of

;l can be used to identify the other poles which contribute to
the system output. The identified poles can again be checked by
using them as knowns and identifying the input. The above pro-
cedure can be continued to identify more poles.

Note that the iterative identification technique was illus-
trated above for a system which only had two real widely sepa-
rated poles and an input which was a single exponential. Neither
of these restrictions is an inherent part of the technique which
can be readily generalized for complex conjugate poles, grouped
poles, and multi~-exponential inputs,
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The iterative discrete identification method described here
has the following advantages:

° It permits us to find the regions where the sys-
tem poles are located.

. It provides a checking procedure for the accuracy
of the identified poles.

. It gives a mechanism for determining the number
of system poles by finding which poles, when used
as knowns, result in an identified input pole(s)

F which is closest to the true input pole(s). As

discussed in Chapter 5, this is especially help-

ful when the system output contains noise.

. By using previously identified poles as knowns,
it allows the separate identificatior of the
poles of a wideband system in different frequency
bands.

The only restriction inherent in this technique is that the
system excitation be the sum of exponentials.

Note that if the regions where the poles are located and

the number of poles in each region are known a priori, the itera-
tive procedure is not even needed. For example, suppose that it
is known that the system contains three poles between f; and f,

and two poles between f3 and fy, f3>>f2. The steps would then
be:

-t
(1) Input e fz.
(2) sSample with sampling periof 1/f,.

(3) Use the knowledge of the input and identify three
poles. The accuracy of the three identified poles can
be checked by using them as knowns and identifying the
input.




-tf4
(4) Input e .

(5) Sample with period 1/f4.

{6) Use the knowledge of the input and of the three iden-
tified lower frequency poles to identify two poles.

(7) Check for the accuracy of the identified poles.

Note that this procedure would require the factoring of a
polynomial of degree 3 to f£ind the lower frequency poles and of a
polynomial of degree 2 to find the higher frequency poles. This
may result in large errors in pole locations even though the
polynomials which are factored are close in a global sense to the
true polynomials. This question is discussed further in Section
7.2. Note also that an iterative technique where the poles are
identified one at a time does not require the factoring of poly-
nomials since at each step the polynomial is of degree 1.

Before applying the discrete iterative method in Chapter 5
to the identification of a system in the presence of noise, the
following section relates the iterative method to the pencil-of-
functions method described in Chapter 3.

4.3 Relation to the Pencil-of-Functions Method

Aside from the selective use of the input and the iterative
nature of the procedure, the iterative discrete identification
method described in Sections 4.1 and 4.2 is very closely related
to the pencil-of-functions method presented in Chapter 3. The
principal difference between the two methods lies in the func-
tions included in the set which is tested for linear indepen-
dence.

More precisely, in the pencil-of-functions method the poles
are determined using the polynomial equation in (3.11) and the

Gram determinant of the set




{y (0)r eony vy (8D, x,(8), ... (t)}

* XN+l
whose elements are formed by successive integrations as defined
in (3.2).

On the other hand, in the discrete iterative approach the
determination of the poles 1is based on a similar polynomial
equation (4.16) but with the set now being defined as

§ {y;(nT), ..., yN+I+l(nT)}

or -nb, T -nb.T
I
[yl(nT), ceer Yyp1(NT), 1 ) eees © }

where, the elenents ace formed by successive shifts as in (4.5).

Note from (4.5) that successive shifts preserve the dimen-
sionality of the space of y,(nT). That is, if y;(nT) can be
expressed as the linear combination of the basis functions

-nplT —npNT -nblT -anT

ﬁ e 7y eeey € ; € 7 e e € ’

Yk(nT), obtained through (k-1) successive shift of y,(nT),
can also be expressed as a linear combination of the same func-
tions. This space preservation aspect represents a fundamental
advantage of the new approach. The pencil-of-functions method as
described in Chapter 3 augments the space of Yl(f) tthrough the

~pt PN
’

use of successive integrals. If e ceey © represent

the basis of the system response, an integration
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introduces the additional basis function 1. Successive integra-

tions introduce the additional components t,t2, cess e

The repeated integral and the shift methods of forming the
elements of the set are, by no means, unique. In general, the
elements of the set can be considered to be the result of a
mapping from the input/output functions. Several continuous and
discrete domain mappings have been tried. Sarkar ([Sarkar, et
al., (1980)] suggested using reverse time integration which for
exponential inputs does not augment the space. Jain [Jain and
Osman (1379), cain (1980)] successively used the z-domain opera-
tor z/(z-b) to form the members of the set. This technique
augments the space by introducing additional poles at z=b.

Note that the space dimension preservation property of
either successive shifts or successive reverse integrations de-
pends on the exponential nature of the input. 1If the input can-
not be expressed as the sum of exponentials, these operations
will augment the space. Since an important part of the discrete
iterative procedure developed in Section 4.2 is the ability to
selectively use the knowledge of the input and since this possi-
bility also depends on the exponential nature of the input, we
adopted the successive shift formulation which does not augment
the space.

Note also that the selective use of the input can be ap-
plied in the pencil-of-functions method. In order to identify
the input pole it would suffice to consider that the input pole
is part of the unknown system whereas the input is an impulse.

it
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SECTION S
IDENTIFICATION IN THE PRESENCE OF NOISE

5.1 Introduction

When the identification technique is applied in practice to
a real system, the measured discrete output will be contaminated
by noise. Then, instead of y;(nT), the measured quantity can,
in general, be expressed as

zl(nT) = yl(nT) + wl(nT) (5.1)

where wj(nT) is an additive noise which can include quantiza-
tion noise, measurement errors and system thermal noise.

Since the 1linear independence relations permitting the
identification of the system poles will then no longer be strict-
ly valid, difficulties can be expected in the determination of
the number of poles and the identification of the pecles them-
selves. More precisely, the number-of poles is determined from
the value of the Gram determinant

rzlzl, oo Z,2)

_Zx?1" one z 2, |
of the set {z;(nT), ..., z;(nT)} where, the shifted versions of
the measured output are again defined as

z,(nT) = z,_,((n+l)T), 2 < i< k.
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and

N
N
[
| e~

*
zi(nT) zj(nT) . (5.3)

n=0

‘where L is the number of sampling periods. Because of the
noise term contained in z; (nT), the inner products which are
the elements of the Gram matrix will also be corrupted by
noise. Using (5.1),

.Y

3 + y.w. + wiyj + W.w. . (5.4)

i™j i73

The first term in the sum in (5.4) is thé inner product which
would be measured in the absence of noise and on which the iden-
tification technique, as described in Chapter 4, is based.

Knowledge of the statistics of the noise wy(nT) permits
the calculation of the statistics of the inner products and thus
can be used to evaluate the effects of noise on the inner prod-
ucts. The analysis of the effect of noise on the Gram determin-
ant in (5.2), which serves to determine the number of poles and
is the basis for the determination of the poles, is highly com-
plicated because of the nature of a determinant. Consequently,
the evaluation of the identification procedure and the determina-
tion of the parameters to be used in the identification is best
carried out through simulation.

5.2 Simulation Program Characteristics

A listing of the simulation program used in the evaluation
of the discrete iterative technique and in the determination of
the optimum identification parameters is given in Appendix A.
The functions performed by the program and the options available
can be summarized as follows.

T




5.2.1 System Output

The program calculates the system output as

2,07y =y amy + y{F ) + winT), 0 <n <P (5.5

where, the output due to one exponential at the input is, using
(4.3) and (4.4), given by

y{3 1y =

and w(nT) is a real, zero-mean, uncorrelated Gaussian random

process.
The number of system poles N, the system poles
“Pjs +++ ~Pyn¢ the system residues Rys «¢« Rys the input

poles -b;, -by, the sampling interval T, the length of the
interval of interest L and the standard deviation of the noise
are inputs to the program. The choice of T and L is made at
each step of the procedure in the manner described in Sections
5.3.2 and 6.1.

Several notes are in order:

Since the simulated system is linear, the output
in (5.1) which is the sum of the outputs due to
single exponentials is the same as that due to
the sum of the same two input exponentials.
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° For simplicity, the input poles are constrained
to be complex conjugates of each other. This
permits to specify a real exponential input by
setting Im{bl} = Im{bz} = 0; a sinusoidal input
by setting Rg{b;} = R,{by} =0; a decaying sin-
usoidal input by specifying b, and b,

_ * . . .
(by=by ) as having non-zero real and imaginary
parts.

. The noise sequence wi(nT) models thermal, mea-
surement and quantization noise, For simplicity,
it 1is assumed to be Gaussian even though
Wy (nT), and especially its quantization noise
components can be expected to be non-Gaussian in
practice. If dithering is used, however, the
Gaussian assumption can be expected to be
valid. Since the signal-to-noise ratio of
z;(nT) 1is a function of the length of the inter-
val over which it is defined, the noise standard
deviation is defined relative to the maximum value
of the signal component yil)(nT) + yél)(nT)
instead of being defined in terms of total signal
power over the interval., This permits the com-
parison of results obtained using various inter-
val lengths.

5.2.2 Identification Algorithms

In the case where knowledge of the input is not used and
the input poles are identified together with the system poles,
the program performs the operations described in Section 4.1.1.
It




forms by successive shifts the set

{z{(nT),... 2, (nT)}, 0 <n<L, L+k<P(5.7)

calculates the inner products

- *
zizj = nzo zi(nT)zj(nT)

computes the Gram determinant

212yt %1%

G = det oo

k

Zx2) %

finds the (i+l, i+l)th co-factors of the Gram deter-

minant for i=0'l’.ic'k-l

forms the polynomial equation

k-l-i([ 1/2 _ 0

S l(ie1,141y) " "
finds the roots A,,...,\, _; of the polynomial
determines the corresponding poles as

ln)\i/'r, i=l'2'.-.,k-1 .

e

e ailA sl

Sat
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These calculations are performed for a specified range of values
of k.

In the case where the input and/or previously identified
poles are used as knowns, the set in (5.7) is modified to include
these quantities, If ajsdgseserdg denote the known input

and/or system poles the set is defined as

-nalT -naIT}

{zl(nT),...,zk(nT), e reees€ . (5.8)

The operations described above are then carried out for the set
in (5.8). Using (4.23), the poles of interest are found from the

roots of the polynomial

k-1
)1/2 =0

\eoi-i ({c .

] , .
iZo K+I(i+1,1+1)

5.3 Parameter Choices

Before carrying out the identification procedure it is
necessary to choose the excitation, the sampling rate or interval
and the interval over which the inner products which define the
Gram matrix elements are calculated so as to insure optimum per-

formance with a minimum of complexity.

5.3.1 Excitation
In the choice of the excitation the following factors must

be considered:

s,




(1) The excitation must be easy to implement in a labora-
tory.

(2) It must excite the system poles. Since the response
due to the system is the sum of decaying real or com-
plex exponentials (4.3), the identification is based
on the transient system response. This transient re-
sponse must be excited by the input.

(3) It must be adjustable so that, as a first step, it
will essentially only excite the linear part of the
system.

(4) It must result in an easily analyzable and identifi-
able output.

An iqput consisting of a sum of exponentials satisfies the
four objectives stated above, We have selected the following
elementary inputs: a single real exponential; a sinusoid; and a
decaying sinusoid. They present the advantage of containing one
or two input poles which can be readily identified using the dis-
crete iterative approach.

Although they satisfy requirements (1), (3), and (4), the
decaying and nondecaying sinusoidal inputs give rise to the fol-
lowing effects with respect to requirement (2):

First, suppose that the system contains one real pole - p;
and is excited by a decaying sinusoid

x(t) = e—(b+jw)t . e-(b-jw)t (5.9)

= 2¢7P% cosut

Then, using (4.3), the system output is given by

o e,




R R -p,t
= 1 1 1
y(t) = [ m + Fi—‘;—:ﬁz ]e (5.10)
N SN (2% T WP ¢S PO T
pl—b—jm pl—b+3w

If b is equal to Py the system output becomes

R . R .
Sl m(b¥je)t 1 -(b-ju)t

—Tr Ju (5.21)

y(t) =

and the output does not contain a contribution due to the system
pole. Thus, if it is des@red to identify Py care should be
taken not to use a decaying sinusoidal input with decay factor
b which can equal P;- Rather, we should select a value of b
which is smaller than the lowest real poles to be identified. On
the cther hand, suppose that Px is One‘of several system poles,
that pyg,, is the next larger pole, and that px 1is the largest
pole that hagpa£ready been identified. Then, if the system is
excited by e K coswt, the pole at -py will not contribute to
the output. This will facilitate accurate identification of
Pg+1 by decreasing the contribution to the output of the known
pole closest to the unknown pole.

The second effect that should be noted arises in the case
where a sinusoidal excitation is used. Suppose that

x(t) 2coswt _ (5.12)

- e]wt + e-]wt
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and, for simplicity, that the system has one pole P Then,
using (4.3), the system output becomes

R R -p,t 2R,p
y(t) = [ “_il:"'—' + ?“"é"‘" ] 1 + ——n——l—lz- cosSwt. (5.13)
Jw pl Jw pl P + u

Note that the system pole, P; contributes a decaying exponen-
tial to the output whereas the input poles at +jw contribute a
pure sinusoid. It follows that the input contribution will not
decay with time and will eventuaily tend to be greater than the
system pole contribution, thus obscuring the pole contribution.
Although we give an example in Section 6.2.4 where a pure sinu-
soidal input was used to yield a successful identification, this
is not generally true. 1In some cases, a steady sinusoidal exci-
tation can be impractical for detection of poles in certain fre-
quency regions.

5.3.2 Correlation Interval and Sampling Rate

An indication of the effect of the sampling rate and the
correlation interval can be obtained from the folloving consider-
ations.

Using (5.4), examine the inner product over an irterval
(0,L]

— 2
21Z] =Y ¥, t YW, t Wy, + I winT) . (5.14)

e

n=0

i Suppose tha' the noise w;(nT) is a zero-mean, stationary, uncor-
‘ related Gaussian random sequence with variance s2. Then the ex-
pected value of the inner product is equal to
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= v v 2 [N

E{lel} = Ylyl + (L+l)o (%.15)
where Y, Y,y represents the signal component and (L+l)c2 is the
bias introduced by the noise. Similarly, the variance of z z,

. 1
can be expressed as

_ 2 — 4
Var[zlzl] = 207 y,y; + 2(L+l)o". (5.16)

Note that both the mean and the variance of the inner product
contain a noise component which increases lirearly with the in-
terval length L. It follows that it is desirable to use a short
correlation interval over which ?I?I includes a large portion
of the total signal power and the noise contribution is as small
as possible.

The effects of the sampling interval or rate can be ob-
served by considering the following. example, Suppose that the
noisy system output is given by

z, (nT) = e T 4 ¢7onT w, (nT) (5.17)

and it is desired to identify the two poles 1 and S. Suppose
that a high sampling rate equivalent to ten times the highest
signal frequency (5) contained in (5.17) is used. Then,

= .02 (5.18)

_1
T =35

and

z, (nT) (e=*02)P 4 (e H)P & w) (nT)

(.98)" + (.905)" + W) (nT) (5.19)

yl(nT) + w,(nT)
=10




where
y1(nT) = (.98)" + (.905)" .

Consider the Gram determinant

Y ¥y * Ny Yi¥, * Ny,
la,| = det (5.20)

Yo¥y + Ny Yo¥y + Ny

where, Nij' i,j=1,2 represent the noise contribution to the Gram

determinant elements. If the correlation interval is suffic-
iently long so that the ylyj , 1,3=1,2, contain all the signal
power, for p; = -1, p; = -5, and T = .02, the Gram determinant in

(5.20) is equal to

48.46 + N, 46.41 + N,
IG,| = det . (5.21)

46.41 + N 44.46 + N

12 22

Note that the signal components in the matrix elements in (5.21)
are within 10% of each other. This indicates that the determin-
ant is close to being ill-conditioned and will be severely af-
fected by the noise components.

Suppose that a sampling rate equivalent to the highest fre-
quency contained in (5.17) is used. Then

=1
T-‘s-oz
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and

z, (nT) (e—.Z)n + (e_l)n + wy (nT)

(5.22)

(.s2)™ + (.3N)” + wi(nT) .

Then, for a large correlation interval, the Gram determinant in
(5.20) is egqual to

7.08 + N 4.64 + N

11 12
J IG,| = det (5.23)

4,64 + N 3.08 + N

12 22

The relative spread of the element siqgnal components in (5.23) is
much greater than in (5.21). It can be expected therefore that
(5.23) will be better behaved than (5.21) in the presence of
noise and would lead to a more accurate identification. Note
that identification is not based on the [G,;] matrix in (5.20) but
would be based on the [G3] matrix defined in (4.10). The [62]
matrix is then one of the co-factors of the [G3] matrix. ~Con-
clusions similar to the above can be drawn regarding the [G3] ma-

trices resulting from using a sampling interval of .02 and .2.

The conclusions as to the desirable sampling interval and
correlation interval can be checked using the simulation results
presented in Table 5.1. These results were obtained for the out-
put given in (5.12) without additive noise and for various levels
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TABLE 5.1
IDENTIFICATION RESULTS FOR TWO POLE CASE

A -
L T Py P2 Py P, /Y pax
10 1 1 2 .998 2.0005 0
10 1 1 2 COMPLEX CONJUGATE .01
10 1 1 2 COMPLEX CONJUGATE .005
10 1 1 2 1.074 1.797 .001
50 1 1 2 COMPLEX CONJUGATE .001
10 0.5 1 2 1.0049 1.98 .001
50 0.5 1 2 1.028 1.94 .001
10 0.5 1 2 1.11 1.78 .005
50 0.5 1 2 COMPLEX CONJUGATE .005
50 0.1 1 2 1.05 1.979 .001
10 0.05 1 2 1.016 1.98 0
10 0.05 1 2 1.026 2.065 0.001
10 0.05 1 2 COMPLEX CONCUGATE 0.005
10 0.2 1 5 99988 5.00013 0
10 0.2 Pl 5 1.0048 4.968 0.001
10 0.2 1 5 1.085 4.727 0.005
10 0.2 1 5 1.33 4.2 0.01
50 0.2 1 5 COMPLEX CONJUGATE 0.01
10 0.05 1 5 COMPLEX CONJUGATE 0.01
L = CORRELATION INTERVAL
T = SAMPLING INTERVAL
P,,P, SYSTEM POLES
51/52 = ESTIMATED POLES
0/Ymax STANDARD DEVIATION/MAX. OF OUTPUT OF ADDITIVE
GAUSSIAN NOISE
5-13
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of additive noise. The noise present for o¢=0 is due to computer
round-off errors. The best results can be observed to be ob-
tained for a small correlation interval length and a large sampl-
ing interval (sampling rate approximately equal to the highest
frequency contained in the output).

For complex conjugate poles, two cases present them-
selves. If the imaginary part of the pole is smaller than the
real pari the conclusions made above as to the desi~ 1le sampling
and correlation intervals remain true. If the ine _anary part is
larger than the real part the sampling rate must be proportional
to the imaginary part in order to prevent aliasing.,

5.3.3 Noise Reduction

In a practical application, the noise level may, in some
cases, be too high for the proper operation of the identification
technique. Then several methbds may be used to diminish the ef-
fects of noise.

If the primary component of noise and signal output are un-
correlated and output noise is zero mean useful methods of noise
reduction include the measurement and the averaging of responses
to periodic repetitions of the input and the averaging of the
Gram matrix elements obtained from repeated measurements.

In cases where the largest measurement error is due to
quantization error induced by the A/D converter, dithering of the
A/D input signal could be especially helpful. This is accomp-
lished by adding a pseudorandom noise to the output of the black
box to cause a uniformly distributed amplitude dither before the
A/D converter. Digital samples at the output of the A/D conver-
ter can then be taken repetitively and corresponding data points
averaged to eliminate effects of the dither and establish the
true value of the signal. If guantization levels and timirg re-
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mained constant for all the repeated responses, this method could
be used to improve the A/D accuracy. Alternatively, the timing
can be dithered, within a small range so that samples are first
taken on one set of points on the waveform and then on another.
In this manner, the quantization error can be averaged out to a

certain extent.

The noise effects will manifest themselves during the prac-
tical implementation of the identification technique. The ade-
guacy of the proposed noise reduction techniques can only be
truly ascertained in practice where constraints as to timing ef-
fects are included and the predominant noise sources are identi-
fied.

5.4 Determination of tiie Number of Poles

As described in Section 4.1.,1 the number of system poles
can be determined from the order of the lowest Gram determinant
to vanish. That is, if K' is the lowest value of K for which

Gg approaches zero, the number of poles is given by
N = K' - ll
In the case where the system output is not corrupted by noise,

this result is valid as illustrated by the example presented in
Figure 5.1. The parameters are, in this case:

System Poles: .033, .080

System Residues: ~.06112, .036 [
Input Pole: .12 i
Sampling Interval T: 5

Correlation Interval L: 10.
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In this example, there are two system poles and one input pole,
The system output, therefore, contains three exponentials. From
Figure 5.1, the sudden drop in the value of the Gram determinant
is observed at K'=4 and the number of poles is therefore accur-
ately determined as 3. Note that because of computer round-off

errors the Gram determinant never equals exactly zero.

When the system output is corrupted by noise, however, the
determination of the number of poles from the value of the Gram
determinant for increasing values of K becomes more problemati-
cal. This is illustrated in Figure 5.2 which was obtained for
the same parameters as those used for Figure 5.1 but with addi-
tive noise whose standard deviation ranged from .1l% to 5% of the
maximum value of the output. Clearly, in the presence of a sub-
stantial noise component the determination.of the number of poles
is very difficult and from the results of Figure 5.2 would appear
to be impossible for noise levels higher than .1% of the maximum

output.

This suggests the advisibility of a different criterion for
determining N, In particular, we explored the possibility of
identifying the system input, which is known, as a check on
whether the number of unknown syétem poles has been prcperly
identified.

We believe that such an approach is possible'because when
the number of poles is incorrectly specified, the poles which are
identified are, in general, very different from the true poles
and vary widely.

As discussed in Chapter 7, the identified linear transfer
function may be relatively close, in a global sense, to the true
transfer function even if the location of the identified poles
are gquite inaccurate. For this reason, we cannot be satisfied
simply by examining the linear transfer function and eventually
the acceptability of results will depend on the effect of linear
pole location errors on the identification of the nonlinear
transfer functions themselves.

o _ .
e o
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SECTION 6
SIMULATION RESULTS

6.1 Introduction

In the identification of a system, two cases may present
themselves., 1In the first case, the regions where poles are pres-
ent and the number of poles in each region are known a priori.
In the second case, this information is not available and it is
desired to find the poles in a region of interest, let us say be-
tween frequencies f, and f,. In the first case, as discussed in
Section 4.2, the iterative aspect of the identification may not
be needed. The identification technique then becomes very simi-
lar to the one proposed by Jain and Osman [1980)}. The additional
feature of the proposed technique is the possibility for checking
the accuracy of the identified poles by taking “hem as knowns and
identifying the input poles.

In the case where the regions where the poles are located
and/or their number is not known and it is desired to identify
the system between frequencies £, and £5, the steps of the itera-
tive discrete identification procedure, as described in Sections

4.1 and 4.2, are as follows for a real exponential input:

1. Excite the system with

x(t) = e—bt,

b small (smaller than fl the smallest system pole ex-
pected to be found). Using a sampling interval in the
approximate range %5 < T < % , identify one pole us-
ing (4.16) with N + I = 1, Since at least one pole,
the input pole, contributes to the output, the Gram
determinant is not ill-posed for N + I = 1,
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2. If the identified pole is close to -b, increase b, de-
crease proportionally T and repeat (l). Based on ex-
perience with several numerical examples, in this step
and in step 5 below, the identified input pole is
judged to be close to the known input pole if it is
within 10% of the true value in low noise cases and
40% in higher noise cases. Low noise conditions are
said to exist if 0 < c/ymax< .005; high noise condi-
tions are said to exist if ,005 < c/ymax< .05 .

3. If the identified pole is not close to -b, use -b as a
known and identify the polel(s) contributing to the
system output using (4.24). This can be done in con-
junction with the information as to the number of
poles given by the value of Gy for increasing K.

4. Check the identified poles by using them as knowns and
looking for the input pole using (4.24) with N=1.

5. When the identification is found to be satisfactory,
use the identified pole(s) as knowns, increase b, de-
crease proportionally T and again look for the input,

6. Continue this procedure until all poles in the region

of interest are determined.

As noted in Section 5.1, a decaying sinusoidal input, a
sinusoidal input or an input consisting of the sum of exponen-

tials could also be used.

In certain cases, the identification may not be found to bhe
satisfactory for any of the identified poles. This may arise for
three principal reasons. The noise may be too large for satis-
factory identification. In this case, the noise would need to he

diminished before proceeding with the identification. In prac-

e




tice, this may be accomplished by sampling of repeated replicas

of the output and averaging the samples.

g A second cause for unsatisfactory identified poles may be
poorly chosen values of b and T. This would occur, for example,
if b is too large (T = 1/b). Then, too many poles may he identi-
fied at once or the poles may be much smaller than b, resulting
in a poorly conditioned Gram determinant.

Finally, unsatisfactory results may be obtained if complex
conjugate poles, say -py+jwy, -p;-jw, with w;>>p; are being iden-
tified with T »~ 1/p;. Sampling at the rate 1/T would then result
in substantial aliasing 1leading to erroneous results. These
could be improved by decreasing T. }

e L

Note that these three cases may, just as well, arise in the
non-iterative pencil-of-rfunctions method. Note also that in the
non-iterative pencil-of-functions method the sampling rates to be
used are not known unless the regions where poles are located are %
known a priori. One sampling rate corresponding to the highest 1
frequency of interest f2 cannot be used for wideband systems be-
cause of the large dynamic range of the possible poles between £
and f,. In all cases where the number of poles is not known the
pencil-of-functions method involves iteratibns. Only one input
is used but .terations are performed in order to estimate the

number of poles.

The general question of what represents a satisfactory or Q
unsatisfactory identified pole is closely tied to the probhlem of
defining a quality criterion for the identification results.
This question will be addressed in more detail in Section 7. In
the present study, we concentrated on the location of poles only
and not location of zeros or the value of residues. Both poles
and zeros are needed to judge the accuracy of transfer function
identification. In view of this, the most obvious criterion of !
accuracy 1is, of necessity, simply the percentage mean square

error in the value of the identified poles.
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6.2 Simulation Results

6.2.1 One Pole Case

In order to evaluate the effect of noise on the identifica-
tion of a very elementary system consider the one pole case where

the impulse response is given by:
h(t) = e”%,

At time t=0, excite the system with a single real exponential

x(t) = ebt,

The system output is then given by

y(t) = E%T le”t - e7PY)

If the input is used as a known, one pole needs to be identi-
fied. If knowledge of the input is not used, the problem is
equivalent to that of identifying two poles. The number of poles
to be identified was assumed known in both cases.

The results of the simulation are presénted in Table 6.1.
A correlation interval of L=10 (10 samples) was used in all
cases, The identified parameters are denoted as b and é . The
following conclusions can be drawn from these results.

- Noise tolerance is considerable when only one pole is
being identified. Noise has much more effect in the
two pole case. In general, identification quality can
be expected to be inversely proportional to the number
of poles being identified. The best results are ob-
tained when b is small; that is, for an input ap-
proaching a step.
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TABLE 6.1
IDENTIFICATION RESULTS FOR ONE POLE CASE
IN THE PRESENCE OF NOISE
CORRELATION INTERVAL L=10

T U/Ymax b Py Py
1. .005 .001 1. 1.013
1. .05 .001 1. .996
1. .5 .001 1. .72
1. 1 .001 1. .67

5 .005 2.0 1. .988
5 .05 2.0 1. .87
5 .5 2.0 1. .303

.2 .005 5.0 1. .994

2 .05 5.0 1. .94
2 .5 5.0 1. .523
.002 .05 500.0 1. .96
.002 .05 500.0 1. .62

(a) Knowledge of input used, b not 'identified.

T o/ Yrmax b Py b EA’l

.5 .005 2. 1. 1.78 1.11
.5 .01 2. 1. 1.36 + 3§ .4
.5 .05 2. 1. .76 + 3§ 1.5
.2 . 005 5. 1. 4.73 1.085
.2 .01 5. 1. 4.2 1.33
.2 .05 5. 1. 1.7 + 3 2.9
.002 .005 500. 1. 474 .68 8.61
.002 .01 500. 1. 428. 28.16
.001 .005 1000. 1. 949.2 16.3
.00 .01 1000. 1. 855.2 55.7

{hr) Knowledge of input not used, b identified.




- In the identification of two poles, noise tends to
generate complex conjugate poles when the two poles
are close together; it results in relatively large er-

rors when they are far apart.

6.2.2 Wideband Four-Pole Transistor Amplifiers Circuit

In this section the discrete iterative approach is applied
to the wideband four-pole transistor amplifier circuit previously
studied by Jain and Osmaa [1979]. The schematic diagram of this
circuit is shown in Figure 6.1. The transfer function of the

amplifier is equal to

7,42 6
H(s) = 8(10°)S“(s ~ 8000(10°)) ‘

(s + .033¢(10%))(s + .c80¢10%))(s + 25.2(10%))(s + 1205.1(10%))

It contains two low-frequency poles, one mid-frequency pole and
one high-frequency pole. The system frequency response is shown

in Figure 6.2.

The iterative identification procedure steps are as follows
for, initially, the case where noc noise is added to the output.
Note that the inner product correlation interval, L, is equal to
10 in all cases. It is supposed that the normalized frequency
band of interest is between .001 and 1500.

1, Excite the system with an exponential with a long time

constant, say, T, = 1000,

_ o-(.001)nT

x (nT)
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Use a sampling period of T=1000, so that T/T.=1. Do not use
x(nT) as a known in forming the Gram determinant. Identifying
one pole, we find,

b = .00099999
which is very close to the input. It can be concluded that since

the system poles did not perturb the input time constant they are
all larger than .001.

2, Increasing the time constant and decreasing T, excite the

system with

x{(nT) = e_('01)nT
with T=100. Identify the input pole using (4.16) with
N +I =1; we get,

b = .02 .
3. Since .02 is different from .01, it is concluded that sys-

tem poles perturbed the identification of input exponential.
Look for the dominant system pole (the one closest to ,01) by
using the same excitation and T but now using the input as a
known in forming the Gram determinant in (4.24) with N + 1.
Find,

p, = .0328 .
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4. Test by exciting the system with
x(nT) = e OLINT - goi00

and using .,0328 in forming the Gram determinant and looking for

the input time constant. Find,
b = .00998

which is close to the input time constant which is, of course,
known. It is concluded that P = .0328 is a good estimate of
the dominant pole, that is, the pole closest to b,

5. The  procedure 1is now repeated at each step 1looking
successively for the next higher frequency pole. The following

results are obtained:

i. Input exponent b = .05, T=20, .0328 used as known,
find b= .0012. Since b is not close to b,

another pole is present in the vicinity of .05,

ii. Input exponent b = .05, T=20, .0328 and .05 used as
knowns. Find P, = .0803,

iii. Input exponent b = .05, T=20, .0328 and .0803 useqd
as knowns. Find B= .04298 which is close to input
exponent. The estimate ;2 = ,0803 is thus assumed
to be correct.

iv. Input exponent b = 1., T=1l., .0328 and .0803 used as
knowns. Find .9999. Since, b is close to b, we
conclude that the system contains no poles between
.0803 and approximately 3.

-




vi,

vii.

viii.

Hence,
mately 300.
was used as
both results

Input exponent b = 106, T=.1, .0328 and .0803 used
7.7. The input is per turbed by

as knowns. Find b
a system pole.

Input exponent 10., T=.1, .0328, .0803, 10. used as
knowns. Find Py = 25.12 .

Input exponent 10., T=.1l, ,0328, .0803, 25.12 used

as knowns. Find 10.006. Thus, Py is judged to be
a good estimate of the third pole.

Input exponent 100., T=.01, .0803, 25.12 used as
knowns. Find 99.9997.

the system has no poles between 25.12 and approxi-
Note that only .0803, and not both .0803 and .0328,
a known. Since (.0803)(.01) ~ (.0328)(.01) use of
in an ill-conditioned Gram determinant.

ix. Input exponent 1000., T=.001, .0803 and 25.12 used
as knowns. Find 600.

X. Input exponent 1000., T=,001, .0803, 25.12, and 1000
used as knowns. Find Py = 1204.66 . .

xi. The estimate can be refined. Input exponent
1204.66, T=,001, .0803, 25.12 and 1204.66 used as
knowns. Find Py = 1205.1 .,

xii. Input 1000., At=.001, use 1205.1, 25.12, .0803 as
knowns. Find 999.87. Thus, Py is a good estimate
of the fourth pole.

6-11
MR afotacititintn, N il " PR




The procedure was repeated for the cases where the output
was corrupted by additive zero-mean white Gaussian noise with
standard deviation equal to .05 and .5 of the maximum value of
the noise free output. The results appear in Table 6.2.

For comparison, the results obtained by Jain and
Osman [1979) in the absence of noise are also included in the
table.

Note that the identification quality remains good for a
noise standard deviation equal to 5% of the maximum output. The
average percentage error in pole location is .25%, 5.6% and
18.5%, respectively, for o/yp., = 0, .qps, and .05 where the per-
centage error of the identified pole p with respect to the true
pole p 1is defined as

-~

E(p) =lﬁ’—;—ﬁil x 100 .

The results obtained using the discrete iterative procedure with
an additive noise of o¢/yg,, = .005 are essentially of the same

quality as those given by Jain and Osman (1973] in the absence of
noise.

6.2.3 One Real, Two Complex Pole Case

Consider a system whose transfer function is given by

2
H(S) = (S r+ .08) _
(S + .1625)(S + .0823 + j ,306)(S + .0823 - 3 .306) °
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TABLE 6.2
IDENTIFICATION OF WIDEBAND TRANSISTOR AMPLIFIER CIRCUIT

RESULTS : i
U/Ymax Py Py P3 Py

0. .0328 .0803 25.12 1205.1 ;

1

.005 .0324 .0801 25.5 1169. |

1
.05 .0216 .0713 21.05 1053.2

JAIN & OSMAN

.0 .034 .075 24.9 1139.5

TRUE VALUES: pl=-033, p2=-080, p3=25.2, p4=1205-1




The system contains three poles: one real pole at -.1625 and a
complex conjugate pair at -.0823 %+ j .306. Note that the imagi-
nary part of the complex poles is larger than the real part. The
simulation results for this case are presented in Table 6.3 for a
noise standard deviation equal to 0, .5%, 1% and 5% of the maxi-
mum noise free output. The identified poles can be observed to
be very close to the true values in the first three cases. Only
for the highest noise level do the identification poles really
differ from the system poles. But, even in this case where the
noise level is high, the results are of reasonable accuracy. The
average percentage error in pole location is, in this case, .26%,
1.8%, 4.4%, and 20.6%, respectively, for o/ypax = 0, .005, .01
and .05.

In order to illustrate further the performance of the dis-
crete iterative approach and to demonstrate the use of a decaying
sinusoidal input it is instructive to examine the steps used to
obtain these results. It is supposed in this case that the
frequency band of interest is between .01 and .15.

The system is excited by
-{ b, +jb, )nT -(b,=3jb,)nT
x(nT) = e 1 2 + é 1 2 .

For ¢=0, the steps are:

- Input T=100, b;=b,=.005. Looking for two poles, find
bl=.0050002, b2=.004999. Therefore, conclude that
no system poles contribute to the output.

- Input T=25, by=b,=.02. Looking for two poles, find
b1=.019785, b2=.019856. Again, conclude that no
system poles contribute to the output.




TABLE 6.3 J
¥ IDENTIFICATION RESULTS FOR THREE POLE CASE 1
: (ONE REAL POLE AND COMPLEX CONJUGATE PAIR) ‘
o/Ymax P, P, P,
j 0. .1613 .082352 .082352
+ 3 .30607 - j .30607 :
?
.005 .1577 .08106 .08106 1
+ j .3094 - 3 .3094
.01 .147 .0866 .0866 '
+ 3 .31 -3 .31
1
.05 .135 .037 .037 .
+ 3 .361 - 3§ .361
%
TRUE POLES ARE: p; = -1625, p, = .0823 + j .306
p3 = .0823 - j .306 R
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- Input T=5, b1=b2=.l. Lookiﬁg for two poles, find
b1=.02, b2=.13. Thus system poles contribute to the
i system output. However, looking for five poles, find
.16, .1 £ j.1, .0823 = j .306 which contains the input
poles.
Conclude that .16, .0823 %+ j .306 could be the system
poles.
% - As a check input T=2.5, by=by=.2 and use .16,

.0823 + j .306, .0823 - j .306 as knowns. Looking for
two poles, find bl = ,19958, b2 = ,19972. Thus, con-
clude that .0823 % j .306, .16 represent the system

. poles.

Similarly, for o¢=.005, the steps are:

~

= ,00501, b, = .00501 .

T=100, by=b,=.005. Find b )
= .0198, b, = .0199.

T=25, by=b,=.02. Find b, 5
T=5, by=by=.l. Find b, = .02, b, = .13.
- T=5’ bl=b2=¢ 1. Use -input -1 + j 01, nl - j.l as

1

knowns.

Find .17 for N=1; .074 £ j .256 for N=2; .18,
.0859 = j .308 for N=3.

- T=5, b1=b2=.1, use .17 as known, find
bl = ,0656, b2 = ,204,. Conclude that .17 does not
represent the system poles.

- T=5, bj=by=.1l, use .074 + j .256, .074 - j .256 as
knowns., Find bl= .0828 , b2 = ,107. Conclude that
.074 £+ j .256 may represent the system poles.




- T=5' bl=b2=tlp use 018' 00859 + j -308' .0859 - j 0308
as knowns. Find b1 = ,1008 , b2 = ,106. Thus con-
clude that .18, .0859 % j .308 represent the system

poles.

This same procedure applies to the case where °/ymax='01'
The noise level is, however, in this case, sufficiently high not
to permit to properly check for the accuracy of the identified
poles using a decaying sinusoidal input. 1Instead, using the real
input :

x{(nT) = e—an j

the steps are as follows: E

- Input T=100, b=.0l. Find b=.0074.

- Input T=20, b=.05. Find b=.035.

- Input T=10, b=.l. Find b=.0198.

- Input T=10, b=.1l. Use knowledge of input.

Find .135

s .

e

- Check inputting T=10, b=,1 and using .135.

Find B=.119. Thus, accept ;1=.135.

- Input T=2, b=.5 and use .135. Find .0288.
- Input T=2, b=.5 and use .135 and .5.




Find .037 £ j .361.

- Check by inputting T=2, b=.5 and using .135,
.037 &+ 3 .361. Find b = .2l. The identified b
indicates that the identified poles are in error but
is judged sufficiently close to b so that they are ac-
ceptable.

Note that the case treated in this section is more diffi-
cult than the four pole case identified in Section 6.2.1. Al-
though the system only contains three poles, these are not as
readily separable as in the wideband four pole case.

6.2.4 Narrowband Four Pole Filter

As a final example, consider the case where the system
transfer function is given by:

SZ

= (S+1)(S+2)(S+3)(s+4)

H(S)

which represents a narrowband filter. The example serves to de-
monstrate the capability of the identification technique when the
effects of the various poles cannot be readily isolated through
use of different sampling interwvals.

The identification results are presented in Table 6.4.
Their accuracy 1is acceptable for noise levels up to 5% of the
maximum system output. The average percentage error in pole lo-
cation ranges from 2.35% in the noiseless case to 13% in the case
where o/Ypax = +05. Two sets of results are presented for
/Ymax=-01. The first set was obtained using a decaying sinu-
soidal input; the second using a nondecaying sinusoidal input.
The identification was performed by identifying one system pole
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at a time. The simultaneous identification of all four poles

would result in complex conjugate, not real,

identified poles.

The procedure used to generate the results in Table 6.4 can

be illustrated by examining the steps involved in obtaining

2 cos nwT
e~JneT 4 JinwT |

x(nT)

5.

- ,000036 = j .0049 ~ % u.

.0013 = j .048 ~ £ ju.

- Input T=5, w=.1l, Identify
.019¢ ¢ Jjuw.

- Test inputting T=5, w=.1 and

cept Py = .59.

poles: .025 £ j .196 ~ % Jjuw.

poles: .34 * j .37 # = jw.

results for o/y .x=-01 using the nondecaying sinusoidal input

The frequency band of interest is supposed to be between

- Input T=100, w=.005. Identify

- Input T=10, w=.05, Identify

+ j .1. Identifying one pole, find Py = +59.

Identify two poles: .0038 + j .098 = %+ jw.

- Input T=2.5, w=.2, use .59 as known.

- Input T=1l., w=.5, use .59 as known.

the

and

poles:

poles.

017’

- Input T=5, w=.1 and use knowledge of the input poles

Xnown.

ac-

Identify two

Identify two



TABLE 6.4
NARROWBAND FOUR POLE FILTER

9/Ymax Py P, Py Py
| o. 1.019 1,93 3.09 3.96
0.01(1) .696 2.01 2.6 4.18
.01(2) .59 2.05 2.6 3.95
0.05 .7036 1.815 3.278 3.897
(1) Decaying sinusoidal input.
(2) Nondecaying sinusoidal input.
6-2C




e

Input T=l., w=.5, use .59 and input poles = j .5 as
knowns. Identifying one pole, find P, = 2,05,

Test inputting T=.., w=.5 and using .59 and 2.05 as
knowns. Identify two poles: .015 £ j .498 = = ju.
Thus, accept p, = 2.05 .

The remaining two poles are found by continuing this

procedure.




SECTION 7
IDENTIFICATION PERFORMANCE ASSESSMENT

7.1 Introduction

In order to assess the practicality of the identification
technique, it is very important to develop an accurate method of
measuring the quality of the identification results. Two funda-
mental approaches to this problem are possible: a measure of the
accuracy of the identified parameters (poles and zeros/ residues)
or a global measure of the difference between the impulse respon-
ses or transfer functions of the identified and actual systems.

The choice of the quality criterion is, of course, dictated
in practiée by the purpose to which the identification results
will be used. 1In a control systems application, the accuracy of
the identified parameters may be very important in the design of
a compensator. In a speech synthesis system, on the other hand,
an accurate identification of the impulse response of the synthe-

sis filter may be sufficient.

Note that the parameter accuracy approach is much more re-
strictive than the global approach. An identified pole can only
be accurate if it is close to the true pole. The representation
of an impulse response as a function of poles and residues is not
unique, however. An identified impulse response may be accurate
even though the underlying poles and residues are quite far from

the true values.

The purpose of the linear system identification carried out
in this effort is to serve as a first step to the characteriza-
tion uf the nonlinear transfer functions of the system. A final
choice of a quality criterion for this problem cannot therefore
be made until the impact of this choice on nonlinear transfer

function identification is analyzed.
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The present effort was limited to the identification of the
poles of the linear transfer function. As such, only the par-
ameter accuracy of the identified poles could be determined. A
choice between parameter and global accuracy measures depends on
their respective impact on the identification of the nonlinear
parts of the system. Therefore, a choice cannot be made at this
time and only the principles of the parameter and global accuracy
measures are discussed in the following.

7.2 Parameter Accuracy Measure

A reasonable parameter accuracy measure is the ratio of the
difference "squared between the true and identified parameter to
the true parameter or the percentage error in pole location.
Thus, if p and ; represent, respectively, the true and identi-
fied values of a pole, the parameter accuracy of 5 can be de-
fined as:

. r02
p, (p) = 1B=RI~ (7.1)

(pl

and the percentage error as:

P(p) = lﬁfﬁi x 100 . (7.2)

Note that in the preceding, the error measure in (7.2) was
used. Such an accuracy measure is easy to implement during the
simulation testing of the identification procedure. It has two
major disadvantages, however, If the order of the system is
erroneously determined, it does not readily permit a measure of
the effect of extra or missing poles and residues. Secondly, in
the practical application of the identification technique the
true parameter values are unknown. Consequently, such an ac-
curacy measure cannot be applied.

7-2
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7.3 Global Accuracy Measure

The standard global accuracy figure measures the distance
between the impulse responses of the true and identified impulse
responses normalized with respect to the total energy in the sys-

tem impulse response:

Ga(B(t)) = |h(t) - B(t)lzdt/f |h(t)'zdt. (7.3)

Equivalently, the accuracy figqure in (7.3) can be expressed in

the frequency domain as

G,(h(t)) = ¢ (H(f)) = ]

H(E) - ﬁ(f)'zdf/ [H(£)|2at. (7.4)

Such a global accuracy figure is only suitable during the simula-
tion evaluation of the identification technique. 1In practice the
true impulse response or frequency response are not known. The
true system response can be measured but not to an impulse since
a perfect impulse cannot be generated in practice. Measurement
of the true frequency response would not be practical,

The global accuracy measure in (7.3) can, however, be read-
ily modified to account for a non-impulsive input used to measure
the true system output. This is accomplished by weighting the
performance measure by the test input g{(t). A practically im-
plementable test input which is as close as possible to an im-
pulse should be chosen. Note that the test input should be dif-
ferent from the input used to identify the system. Consequently,
the weighed performance measure is defined as:




[ [th(t)-h(t)] * x(t))3at

f[nee) * x(t)]2at

(7.5)

[ |uE) - B(E)|? |x£)]%af

[ 1H(E) | 21x(E) | %at

Equation (7.5) can easily be modified to measure the performance
of a sampled sygtem:
I [(htn)-h(n)) * x(n))?

. _ nie
p_(h(m)) AERTL
n
. o _ (7.6)
| H(ejw)-H(ejw)‘z |x(e3")|2aw
= ’j H( ejw) '2 lx(ejW) 'Zdw

where X(n) is the sampled version of x(t) and w is the
frequency normalized with respect to the sampling rate.

As discussed in Section 7.1, a definitive choice of a per-
formance measure must follow an analysis of the effects of linear
system identification errors measured in a parameter or global
sense on the identification of the nonlinear parts of the sys-
tem. It should be noted that if a good global performance mea-
sure is sufficient té insure adequate nonlinear transfer function
identification, a question as to the appropriate 1linear s&stem
identification technique arises since a good global performance
measure does not necessarily require that the identified poles be
identified with an equally good rms accuracy. Then, it may be
sufficient to identify a system frequency response which is close
to the true frequency response and, from it, derive the system
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poles and zeros. The linear system frequency response can, for
example, be estimated from steady-state sinusoidal measure-
ments. Such a technique, although potentially requiring more
measurements, should be more resistant to noise than the tech-
niques discussed in this report which first estimate the system
poles and zeros.

To illustrate - the difference between the global and param-
eter accuracies and the relation of these measures to the identi-
fication technique, consider the following example. Suppose that
it is known that the transfer function of the system is given by

H(s) = pls (7.7)

that is, that the system has no finite zeros. It is desired to
identify H(s). Suppose that the identification is based on a
non-iterative technique and that the poles of H{(s), that is, the
roots of P(s), are identified as the roots of the polynomial of
the form (3.11):

1/2 _
([G2N+1]i+l,i+l) =0 . (7.8)

1/2
IN+#L)i+ 1, i+1) . (7.9)

The relation between the global and parameter accuracy measures
is now apparent. The global accuracy depends on the difference
between P(jw) and the polynomial in (7.8) with A=jw. The param-
eter accuracy depends on the distance between the roots of P(s),
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and those of the polynomial in (7.8). Note that the two measures
are equivalent when one pole is identified at a time, that is
when N=1.

In order to ensure a good parameter accuracy in the general
case not only must the polynomial in (7.9) be accurate in a glo-
bal sense but the coefficients of the polynomial (the Gram deter-
minants) must also be accurate. Note that a good global accuracy
can be obtained even if the estimate of the number of poles is
wrong especially if the estimated number is larger than N, Note
also that the estimation of P(jw) is essentially spectral estima-
tion. It follows that an accurate identification in the global
sense is much easier to perform than an accurate identification
in a parameter sense. However, the adeguacy of the global meas-
Lre in ensuring an accurate nonlinear transfer function identifi-

cation is difficult to gquantify.

L
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SECTION 8
CONCLUSIONS

The starting point for our effort was "the pencil-of-func-
tions" transfer function identification method originally pro-
posed by Jain [1974]) for the identification of linear systems and
later applied by Ewen [1975, 1979]) also to the identification of
nonlinear transfer functions of a circuit. Because of the limi-
tations and difficulties encountered by Ewen [1979]) in the pract-
ical application of this method, the objective of the present
study was to devise a modified approach to system identification
that would -lend itself more readily to actual laboratory measure-
ments.

As a result of this investigation, the discrete, pencil-of-
functions identification (DI) method described in Chapters 4 and
5 was formulated. Its main characteristics are:

- Completely discrete formulation directly applicable to
sampled data.

- Selective use of the knowledge of the input poles to
test for regions where poles are present and to deter-
mine the reliability of the identified poles.

- Iterative search for poles starting from the lowest
frequencies and progressively moving up to higher fre-
quency poles with each iteration. Adjustment of the
sampling interval T to match the pole being sought.

- Use of previously identified poles as knowns in the
set defining the Gram determinant during the identifi-
cation of additional poles.

- Use of time shifts to create new members of the equiv-
alent to Jain's pencil-of-functions set.




The advantages of the discrete iterative approach can be
summarized as follows.

- Repeated integrations are not required since time
shifts replace integration.

- The accuracy of an identified input pole when it is
far from system poles gives a measure of the best ac-
curacy that can be expected.

- Regions where system poles are present can be deter-
mined iteratively.

- The number of poles to be identified is determined by
stopping at the highest significant pole as opposed to
-iterative predetermination with-a Gram determinant or
spectral analysis.

- Re-identification of the input poles while using the
identified poles as knowns gives a measure of the ac-
curacy of the identified poles.

- The use of identified poles as knowns 1is especially
useful for wideband systems.

- Each stage of iteration .requires the measurement of
approximately only twenty output samples.

- The highest required sampling frequency is equal to
the Nyquist rate.

The discrete iterative identification (DI) technique was
tested by simulation for the case where the output signal is cor-
rupted by additive noise. The results of these tests were pre-
sented in Chapter 6., The identification was successful for both
narrowband systems containing up to four closely grouped poles
and for a wideband system when output noise standard deviation
levels did not exceed 5% of the noise free maximum system out-
put. Additive output noise level can generally be decreased to
the desired level by averaging out sample values in repeated ex-

aadihCia,
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periments, but an individual sample has to be matched by the num-
ber of bits in the A/D quantizer.

Based on these results, it is concluded that the DI method
should be capable in practice of identifying systems containing
separate groups of four or fewer even closely packed poles in the
presence of additive output noise whose standard deviation is of
the order of 1% of the maximum system signal output. If the out-
put noise is mainly due to quantization, this should permit use
of 9 or 10 bit quantizers. As noted above, the highest required
sampling frequency 1is equal to the Nyquist rate, This should
permit a relatively straightforward implementation provided we

"

are not dealing with a very high Nyquist rate.

These results compare very favorably with those obtained by
Ewen [1979] who was able to apply his method to identification of
only a two pole circuit and who concluded that for his method, a 4
two pole system required the sampling rate of 4 to 10 times the
highest frequency of the passband of the system; that is, two to
five times the Nyquist rate, and an A/D converter with a resolu-
tion of not less than 16 bits. Furthermore, the identification
of a circuit containing a larger number of poles would have re-
quired an A/D converter with a greater resolution. Because 16

bit (or higher) A/D converters cannot be clocked at high rat%es,

ot

Ewen's method was correspondingly very limited as to the band-
width and the order (number of poles) of the system which could
be identified. Moreover, the method had no special provisions
for the identification of wideband systems to take advantage of
the large spread in pole locations even in the cases where the ]
total number of poles was relatively small. ]

The discrete iterative technique described in this report 1
has the following comparative advantages. Th: DI method is more

noise tolerant and this permits the use of an A/D converter with
less resolution. Since the availability of high speed 10 bit A/D
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conver ters (output noise less than 5%) is much greater than that
of 16 bit converters, the DI method can be employed at higher
sampling rates. This characteristic added to the fact that the
present technique requires a sampling rate equal to the Nyquist
rate implies that the DI method will permit identification of
higher frequency circuits. For example, if the fastest commer-
cially available 16 bit converter were of rate 125 kHz, the maxi-
mum bandwidth of a system which could be identified using Ewen's
method would be limited to 125/10 or 125/4, i.e., 10 to 30 kHz.
If, on the other hand, a commercially available 10 MHz 10 bit A/D
converter were used with the discrete iterative approach, the
bandwidth of the system could be as high as 10 MHz,

The advantage just cited appears to offset the primary dis-
advantage of the DI technique which is that because of its itera-
tive nature, more input cases are needed. The sampling rate is,
however, no greater in each case c.aan the Nyquist rate. More-
over, the iterative nature of the method and the selective iden-
tification of the input poles as system poles permit the identi-
fication of wideband systems without the requirement that the re-
gions where the poles are located and the number of poles be
known a priori. In defense of iteration, it should also be
pointed out that the first stage of the Ewen procedure, which is
the determination of the number of poles, is itself also an iter-
ative procedure. Fur thermore, there is little guidance to the
experimenter what sampling rate should bhe used in that first
stage.

Note, finally, that the system identification approach dis-
cussed in this report is not being presented as the ultimate sol-
ution for all circuits and may still be impractical for the case
of the most complex, widest-band circuit. The DI method is, how-
ever, another step forward, hopefully significant, for identifi-
cation of circuits with relatively few poles and hopefully con-
tributes some enlightment for the analysis even of circuits with
many poles.
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FI18 T)1:«lDENTC.FTN
C IDENTIFICATIDN FRDGRAR A27¢

C LESLIC KATES 11-317-00
c

C MAIN PHDGRAR

INCLUDE "JLENTC.CHN
c

IXXV(3)a

I1XXV12)»0

CaLL INFUY
CALL NOKNM1
DO 600 NSAVEsmMnM. NSTOF
PO 500 KAN? They, RANF
IXXC) )R IXXVIRANFTRE2=1)
IXX ()2 XXV (RANETRED)
CaLL NOISE
Kr=HSAVE
MleMM-3
WRITE (4.2000) nAM
2000 FORRMAT (/3% ‘Me’e]3)
CALL MATRX}
i IF (MAT2,NE.O) CALL MATRXD
CALL COFCTR
CaLL FOLESUIEK)
300 CONTINUE
MH=MSAVE 3
MTuMp-]
IF (RANF.GT.1) CALL AVERAG
6§00 CONTINUE

CALL EX3TY
END

SUKRDUYINE INPYT i
BYTE FNAME(4AOD) B
CORFLEX EX3.€X2+FACTR]»FACTR2 s SUNI  SUMZ.SURI i
INCLUDE *IDENTC.CHN’

TYPE 2. INFUT FILENANE: ®

ACCEFT 110G+FNAME .
1100 FORMATI40AS)

FHNAME(40)s0 1

OFENIUN]Trl c NAMESFNARE . TYFEe "OLD )
1 READ (141000) NMNFF RK MMM HETOR, TSHUFT 1
1000 FOKMAT(20)6)

READ (1.:.2000) MULNELTAT.SICGRA
2000 FORMAT(20F16.7) )
1 RU2«CONJIG(MUS )

HEAD (1+2000) (OMEGA(T)ela] o NN)

READ (3:.2000) IKE])elu) NN 3

KEAD (3,3000) MATY2,IOIEF + RANF . JOLUIAN .

IF (RANF.GT.0) KEAI* (1.1000) (IXXVU(I)sle} . hANFED)

IF (JOUAN.GT.0) KEAD (1.2000) (W(1),1=].J00AN)

CLOSE (UN]Tw1)

1= 10DEF 4 JRUANSD

3F (MMM LT.]) MHMe]

IF (RSTOP.LT.MNRM) RSTOPmMNMM

VRITE (4:4000) NN .FF. KK HEM.MSTOP. JSHFT .
4000 FORMATCIX: ‘Ne* g 137X Fo s 10/73Xe Ku*,J4/7)%s *STARTING M’ 33,

1 ZIXs FINAL Mo’ e3di/73%¢’SHIFT FAKAMETER2 ¢TI D)

WRITE (4.4500) MU/ MU/ DELTAT . SICHA

4500 FORMAT (X *HU @ o F 16,70 0 eF16.7,2X, "HUZe*F16.70"0"+F16.7/

o
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S000 . FOMMAT(IX, *OR(GA® o D(F1e. 2 ¢ eF1&.2:2Y)¢
1 CZ17062020F 18,70 4 +F36.2:2%3))
WRITE (4.6000) (P(l)elml NN)
600¢C FOHRAT(IX e "o * o 2UF 16,70 °eF16.72:2X)
H] (/71X e DX 2UF 3470 e sF16.7:2X)))
IF (RATD.EG.0) WRITE (4,e500)
IF (RAT2.NL.0) WRITE (4,6600)
WRITE (4,£700)
6300 FORMATC( $° 4 SR1P*) 1
4600 FORMAT (‘3 'DD")
6700 FORMRATC 4+ UNRIASED [IAG ELEMENTS FOK CRAM DET )
IF (JODEF.EQ.O.ANDIL JOUAN.EN.O) WRITE (4.2000)
2000 FORMAT (3IX: "REGULAR DEF OF J1/0 FUNCTIONS’)
IF (I0DEF.NE.O.AND. JOUAN.ER.O) WRITE ¢4.7300)
7100 FORMRAT(IX: ‘DEFINE Y(H=3 «N)®XI(N) Y(RoN)I=X2(N) ")
IF {JODEF.NL.O.AND. JOUAN.NE.O) WRITE (4.7200)
2200 FORMAT(IXe *DEFINE Y(R-J~3N)EX1(N) Y(R=-JuN)=Y2L(N)")
IT (JRUAN.NE.O) WRITE (4.B000) JOUAN: (W(1)s 121 tQUAN)
8000 FORRMRATIIX, "DEFINE YUR-Jdl..  FMeNIEZUINY /5%, "y 137
] IXe “INPUT Wm’ , 2¢F 16,7007+ F16.7:2X)
! C/ZIXIBX I QtFI6.72¢°¢"+F16.7:2X)))
1F (RANF.ER.O) WRITE (4,9000)
IF (RANF.NE.O) URZTE (4.93100) RANF L (IXXVI]11sJa) . RANF2D)

f00C FORMAT(IX¢"ND INSUT T0 RANDORN NUREKLK GENERATDR’)
®100 FORMAT(IXe12¢° INIUTS TO RANIOM NUKKER GENERATOR! '/
] 1XsJOCIXe1Se’ 019D
c
KTeKK-1

C CALCULATE X(IN)sYHIN)
DO 200 Ne).FP
EXe(=3.)0DELTATSN
EXjmEXshul
EX2sEXSMUD
XI(NY=EXFIEX])
X2(N)=EXFI(EXD)
o] URJTE (4,100)) NsXJIN)XD(N)
NI00} FORMAT(IXe*X( " e1ds )@’ E14.7¢ ¢’ 2€14.7:2X1E54.7¢°+°4E14.7)
SUni=(0,+0.)
SUM2=(0.+0.)
SUN3=(0.+0.)
DO 100 =3 NN
FACTRIeR(]Y/Z(RUI-OMECGACTI )
FACTRIvR(I I/ (MUD-OREGAC(]))
Exiw(=3 . )00 MEGACIIPDHELTATIN
SUMIrSUMI S (FACTRIFACTRIIIEXF(EXT Y

PRI . SE P Y 3 PUIPWPT AP THE S

y

SUNDsSURD4FACTRY !
SUMI=SUMISFACTR2
100 CONT INUE
YHRINI=SUMT = (XTI (N)ESUM2) ~(X2(N)PSURY) j
VHITE (4,2001) NoYHIN)
20¢3 FORRAT(IXe "YC 033 )w’ €14 7070 E14.7)
200 CONTINUE |
c 4
IF (JOUAN.EG.O) GO TP 700
C INIT AKKAYS YYS ANL LAMDAS FOK AVEKAGING
700 RO 7720 J=3.13
LARDASET Y =(0.00.)
PO 750 Je3o33 4
-3 YYS(1.12(0,00.)
750 CONTINUE 4
770 CONTINUE ;
RETURN i
(1)
c
A-2
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[

C FIND

150

D300}
v. -

200

300
S00
f00

4]
02003
100

COnFLEX 2.€X
INCLUDE “JLENTC.CAN-

EXmt=3, 100 ))IBHELTATRN
LrEXPLEX)
2+2910./72D1V(})
RETURN

END

SURROUTINE NORNM)

COmPrLEX 2
INCLUDE “IDENTC.CHN'

MAX Y
XXD)=ARE(REALIXICII))
XXDOIsAPS(REAL(XD(3)))
YYDaAPSIREAL (YM(1)))
DO 150 Ne2.KK
YYDTeAFSIKEALI(YHINY })
1F (YYDT.G.YYD) YY[LeYYDT
CONTINUE
00 200 N=) FP
AXICN)eXIIN)PIO./XXD]
X2(NMI=X2(N)S10./XX2
YM(N)IsYNIN)PIO. /7YY
VRITE (4430021) NiXJUININ,XDINI«N.YH(N)
FORMATC(IXo*X3€°¢e3307)8° E34.7%¢ +E14.7+° X2¢(*°s13:")e’,E34.7,
St rEYA 70 YO I30 v E14.70"0%0E14.7) .
CONTINUE
IF (JOQUAN.EQR.Q0) GO TO 900
DO 300 1=1.JQUAN

2=EXF (=1, )t 1ISDELTAT)

ZDIVI1)=ARSIKREAL(2Z))

DO 300 N=2.NK
2=EXP(L=3.YPU(S)SNELTATEN)
ZZPTeABS(REALIZ))

IF (2Z17.6T.203001)) ZDIVII)I=Z20T

CONTY INUE

CONTINUE
RETUKRN
END

SURROUTINE NOJSE
INCLUDE “JDENTC.CHN’

PO 300 Nwj,FF .
CALL GAUSS(Y.IJISE+SIGRA,CIXX)
YI(N)=YHIN}) & YNDISE
WRITE (A.2003) YNODISEN'YI(N)
FORMAT CIXs “YNOISE= s FIS.6¢3Xe Y( o13e’)n v[14,.2¢°¢°+E)4.?
CONTINUE
RE TURN
ENp
SUFROUTINE MATAX])

COMFLEX Y1.YJsSUNIDEY
INCLUDE ‘JDENTC.CHN’

c
C FILL IN RMATRIY
JPREARENN 4 1 = JODEFS2 - JOUAN
DO 400 lrjonn
RO 300 Jm]onn

3
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DU 2CT Nej RN

VIsYUNIT-Q4IEMrT)

IF (J.LTIMKEAR) OO0 T0 @0

1F (10ONEF.(0.0.0%.).0T.1kKEARS) Y GO TO 50
17 (1.EQ.IPREAK) Ylex) (N}

1F (J.EQ.JHREAXITI) YJex2(N)

00 10 RO
so 11=]=-nne JOUAN
CalL GET2(YI+11.N)
80 YJeY (NG J-Q41SKFT)

1F (J.LT.IPREAK) GO 10 320

1F (JODPEF.EG.0.OR.J.G1.JRREAK4 ) GO YO 100
1F (J.E0.1FREAK) YJsXx](N}

IF CJ.EQ.JNREAK4]) Y uX2(N}

G0 70 120
100 JJ= J-mnd JQUAN
CALL GETZ2U(YJsJUJeN)
120 SURI=SUNI4Y]SCONJIG(Y )
1 d WRITE (4:3001) JeJeNeYIoY),SUNL
D100} FORMAT(IXs 374 12¢° Ju’o]2.° Nu’s13,
r 1 COYTE T F12.60 1 F32.60° YYuoF12.60 v eF12.60
D 1 T SURIe F14.40° 1 vF14a.8)
200 CONT INUE

YYC) e J)wSUMY
YY{J:1)=CONJIGISUML)
C SAVE VALUES FDR AVERAGING
YYS(1 )= YYS(YeJ) ¢ YY(1,9)
IF (1.NE.D) YYS(ULI)ImYYSrg, 1) 4 YY(S.1)
00 CONTINUC
400 CONTINUE
DO S55 Jel.Mm
WRITE (4:3313) (YY(loJ)eJdedomn)
1111 FORMATLIX . 4(F34.6¢'v*'eF14.6))
$353 CONTINUE
CALL DETRM(-3,DET)
WRITE €4,3000) DET

1000 FORMAT (3 X+ "GRAN DETERMINANT 1 1XeE14.74°, " +E14.7)
REYURN
END

c

SUFROUTINE MATRX2D

COMFLEX DET
INCLULE "IDENIC.CAN®
C
C FILL IN HIAGONAL V)TH UNEFIASED ELEMENIS
VALUE=ALS (SIGNASSQ)
1ENDpann
JF CIODEF.NE.O) JENDarM-)
10 100 J#).1END
YY(la2)mYY(]4) )=VALUE

100 CONRTINUE
n 0 STL Ie3onn
[d WRITEC €4,1111) (YYQO)o D) edeloeln)

[ RERE! FORMATCIX 4(F34.60"¢"¢F14.8))
ness CONTINUE
CAaLL DETRMI{-3+DET)
WRITE (4.3000) DEY
1000 FORMAT(1Xs *GRAM [IET, UNPIASED DIAG CLEMENTS ‘e€14,7:7 %014, 7)

RE TURN

END
[

SUPROUTINE COFCTR
[

COMFLEX SUMI.AVE

"y

PR PP 1

proce L)

il atage . o

Sl cosih

B
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.
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.
C LOOP FOR COFACTOR
SUntet0.+0.?
DO S00 1s31.nnm
CALL DPETRA(ICOFACTI))
WRITE (4,3000) 1.COFACTC. -

1000 FORMAY (1Y, *COFACTOR" T3¢ "o sE14.7+ 7+ +E14.7)
SUR) «SURI4COFACT(])
500 CONTINUE
AVGeSUNT 7NN
URITE (4,2000) AVG
2000 FORMAT(§Xs * AUERAGE OF COFACTIOKS “+E14.7+°0°+E14.7)
RE JURN
END
c
SURROUTINE FOLEStITR)
c
INCLUDE “JTDENTC.CmN'
c

C CALCULATE COEF DF POLYNORIAL FKOM COFACTORE
€ AllJUST MM AS NECESSARY
Nrsnn-TONEF - JRUAN
MTenT=JOUEF - JQUAN
20 DO 300 1=0.NY
COLF (1)1eCOFACT(]4))
IF (CDEF¢(J).EN.t0.+0.)) GO TO 50
COEF (1) (SORT(COEFCTI)ItC(-3188])
50 CONTINUE
p WEITE (4.30031) 1.COEF())
10013 FORMAT(IX s "COEF (4312, )0 ¢F15,60°+"1F13.6)
100 CONT INUE
CALL ROOTCPC(COEF.COF . MT.LAMDA,JER)
If (IER.NE.O° GO 30 300
DO 200 1e1 o NT
A=REAL (LARDACT))
FeAlnAGLLARDACT))
FOLEIw (ATARCE/A) ) /Z7DELTAY
POLER-(ALOG(A'I20F132))/(:.!bELTAT)
URJITE (4¢306C) 1oLAALALL) . FOLER.POLE]

1000 FOEHAT(lX-'LAHDA('.XJv’)-'vE!4.7".’.E!l.7o/
3 2X.* POLER®’ £14.7+° FOLEI=*sE34.7)
LARMDAS (1) rLAMDAS(1) 4 LARDALTY
200 CONTINUE
GO 10 f00
o0 WRITE (4,2000) lE&
2000 FORRATEIX, ‘THAOR DN ROOICE “013)
C FROM NOW ON USE MT INSIEAD OF kRN KECAUSE ONLY f-1 RDDIS
900 CONY INUE
KE TUKN
END
<
SUKROUT INE AVEKRAG
[
confLEX DET
INCLUDE “JULENTC.CAN"
C

MTTenT-10NCF - J0UAN

DO 100 le)on1Y
LARUAC T Y el ARDIAS (] ) /KANF
AsKEAL (LARDAIT))
ReAlRAGILANDACT))
FOLEI= (ATANTR/A) ) ZDELTATY )
POLEk-(ALOG'A'ltlr-l?)’/(?-iutLYAT)
VKITE (4,310085) TLAMLAC}) . FOLERJFOLED

1000 FORMAT(1X: AV LARDAC 13, " )a 14,20 ¢ 0E14.270/

Jr

P TPTEIE TP v G W)




[NV TR YT

PO 250 I=1.nn
PO 200 Jei.nn
YY1 e JIwYYS L, J)/RANF
200 CONT INUE
%0 CONTINUC
PO 55 I=1.Mn
WRITE ¢4:31111) (YY(1. ), Ja) nn)
1111 FORMAT(IXeJ(E14.72¢°¢ " E1A.7))
ssS CONTINUE
CALL DETRAC(=1.0ET)
WRITE (4,2000) DEY
2000 FORMAT(IX: "AUG GRAN DETERMINANT o 1XeE14.2.7,°€34.7)
CALL COFCTK
CALL POLES
g RETURN
END
SURROUTINE DETRMIIFLAGDET)
COMFLEX DETSDETT(D)
INCLUDE ‘IDENTC.CHN® .
c
1F (JFLAG.LT.0) GO TO 600
C NOVE MATRIX FOR COFACTOR 1 INTO WOKKING MATR]IX
Ivay
DO 200 1e1.NT
IF C(IY.EQ.IFLAG) IYelY4l
Jysy
PO 100 Jw3omY
IF (JUY.EQ.IFLAG) JYe Y+l
VYY I J)=YY ()Y JY)

JY=JY$)
100 CONTINUE
IY=1Y4}

200 CONTINU"

In=nY

GO 70 700
C DOING WHOLE MATRIX--MOVE 1T ALL
600 Inenn

DO 450 Jel.nn 1
0O 630 Jwionm
WYY(T o 2I=YY (T )

630 CONTINUE
430 CONTINUE
200 CONT INUE -
I WRITE (4.3009)
11001 FOKNATIIX e *HETKN MATRIX®)
o PO 733 123000
 d VRITE (4.3333) (UYY(1,J)eJdmlolnmn) b,
[ORRE! FORMAT(IX a(F14.&1°0°cFla.6.1X))
075S CONTINUE
CALL CGECO(UYY«13:1M.1FVT.RCONCOF)
(4] TYPE #,"REVISED MATRIX®
ch NO 7356 Jeieln
co WRITS 4e1131) (WYYC(To )oymtolN)

Cn7s6  CONTINUE
o VKITE ¢4.1112) RCON
r3ss2 FORMNAT(1X+ ‘KCONe ' sE16.8)
cc IF ((1.46CONY.E0.3.) GO 10 800
IF (RCON.E0.0.) GO TO 800
CALL CGEDI(WYYe1deIM, IFVYDCYIT.COF.10)
P EXeREALIDETT(2))
DET=DETTC1)2(30.29EX)
o WRITE (4033337 RETVCI Yo ETTC2).ET
1113 FORMATEIX " 1ETo e ICEIA. 80" 1°0E14.67))

!
i
!




—

[ 1YY

D2001
%00

>70P

SR emIvI eV ?
WRITE (4,2001)
FORMAT(1X:'SEY DET 10 0.°)
RE TURN

END

o

i bda it il
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PFIF T1i=1DENTC

+CHN

C COMMON FOR IDENT PROGRAM A27¢

C INFUY
INTEGER
INTEGER
REAL DE
COnFLEX
C CALCULATED
INTEGER

NNePP. KK RN NSTOP . NAT 2, ISHF T JODEF
RANF » JOUAN, IXXV(20)
LIAT+SIGNRA

HUS +OREGA(101.R(10)W(30)

MM RT KT, IXXC2)eJPUT(SA)

REAL 2DIVI1O)

COnFLEX
COnMFLEX
COnFPLEX
COnFLEX
C CoOnnON
COMMDN
CONMON
COnMON
COMNON
COnMON
COMMON
CONMON

nu2

X3€01200),.X2¢0:200),¥(0:200) YH(0:200)
YYCI3033)eYYS(I3+13)sCOFACT(ID) WYY (23+1D)
LARDACII) LANIAS(I3).COEF(0:32),COF(14)

NN PP oKKe MM NSTOF 1 nAT 2, ISKFT
1ODEF + RANE { JOUAN ¢ I XXV

PR MT KT JXXs TFVUT

DELTAT SIGNA.ZDIV

MUY +OREGA R W MU2

X1 eX2¢Ye YR YY.YYS:COFACT WYY
LANDA S LARIIAS . COEF » COF

PR




MISSION
of
Rome Avr Development Center

RADC plans and executes nesearch, development, test and
selected acquisition proghams in suppont of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering support within areas 04 technical competence
48 provided to ESP Program Offices (POs) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objects, w/te!;agence data
collection and handling, information AyAtem technology,
Lonosphernic propagation, solid state dciences, microwave
physics and electronic retliability, maintainability and
compatibitity.
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